
Lab 1B: Gradient Descent

Juan Elenter, Ignacio Hounie and Alejandro Ribeiro*

January 22, 2023

1 Empirical Risk Minimization

In Section 1A.2.4.2 we considered the least squares prediction of Penn
GPAs based on high school GPAs and SAT scores. This is an example
of a more general class of problems that are known as empirical risk
minimization (ERM).

Consider a generic collection of N data pairs (xi, yi) along with predic-
tions ŷ = Φ(x; w). In the function Φ(x; w) the variable x is an input
and w is a parameter to be determined. We say that Φ(x; w) is a learn-
ing parameterization. The goal is to compare outputs yi with predictions
ŷi = Φ(xi; w) so as to find a suitable value of w. With this parameter value
on hand we can then make predictions ŷ = Φ(x; w) for input variables x
for which the output y has not been observed yet.

In order to find suitable values for w we introduce a loss function `(y, ŷ) ≥
0 which we use to evaluate the cost of predicting ŷ when the true value
realized by the world is y. Given that we have N data points xi for which
the true output of the system is known to be yi, we define the empirical
risk associated with parameter w as

r(w) =
1
N

N

∑
i=1

`
(
yi, ŷi

)
=

1
N

N

∑
i=1

`
(

yi, Φ(xi; w)
)

. (1)

*In alphabetical order.

1

xi Φ
(

xi ; w) ŷi = Φ(xi ; w)

f (·) yi

argmin
w

1
N

N

∑
i=1

`
(

yi , Φ(xi ; w)
)

w∗

Figure 1. The system and the AI. The AI attempts to mimic the behavior of the
actual system.

The empirical risk r(w) measures the predictive power of coefficient w.
The quantity `(yi, ŷi) is always nonnegative and indicates how close the
predicted output ŷi is to the true output yi. The empirical risk averages
this metric over all available datapoints. It follows that a natural choice for
w is the value that makes the empirical risk smallest. We therefore define
the optimal coefficient as the one that solves the following empirical risk
minimization (ERM) problem

w∗ = argmin
w

r(w) = argmin
w

1
N

N

∑
i=1

`
(

yi, Φ(xi; w)
)

. (2)

It is ready to show that linear MMSE is a particular case of (2). We do so
in the following task.

Task 1 Show that the linear MMSE problem is a particular case of the
ERM problem in (2). �

Solution: To recover the linear MMSE problem from the ERM problem
in (2) define the loss function as `(y, ŷ) = (y− ŷ)2 and the learning pa-
rameterization as Φ(x; w) = wTx. With these definitions (2) reduces to,

w∗ = argmin
w

r(w) = argmin
w

1
N

N

∑
i=1

(
yi − wTxi

)2
. (3)

This the same problem that appears in Section 1A.2.4.2. �

The ERM problem in (2) is more generic than linear MMSE because we

2

can consider parametrizations that are not linear and losses that are not
quadratic.

It is instructive to understand the motivation for (2) that we illustrate in
Figure 1. In this figure we represent the real world with the bottom left
block. The world is a function f (·) that for a given input xi produces an
output yi. The decision system we represent in the top left takes the same
input xi and produces the output ŷi = Φ(xi; w). This is the block that
we can call an artificial intelligence (AI). This is a block that is trying to
replicate the behavior of a real system and it is not unwarranted to define
intelligence in this way.

The ERM problem is represented by the block on the right. This block
compares outputs of the actual system f (·) with outputs of the artificial
intelligence Φ(·; w) and attempts to match them. This process of matching
is what we call learning or training. It’s goal is to use past experience to
find a parameter w∗ that we can use to understand future inputs.

2 Gradient Descent

To solve (2) we use a gradient descent algorithm. Begin by taking the
gradient of the empirical risk r(w) with respect to the parameter w. If this
parameter has p components, i.e., if w = [w1; w2; . . . ; wp], the gradient of
r(w) is defined as

g(w) :=
[

∂r(w)

w1
;

∂r(w)

w2
; . . . ;

∂r(w)

wp

]
. (4)

It is instructive to consider the first order Taylor’s expansion of the risk
r(w) around a given point w0,

r(w) := r(w0) + gT(w)(w− w0) + e(w) (5)

where e(w) denotes the expansion’s residual which is is of order (w −
w0)

2 if we assume the risk function r(w) is sufficiently regular.

The expression in (5) is interesting because it shows that moving along
the negative gradient can reduce the value of the risk. Indeed, let ε > 0
be a sufficiently small scalar and suppose that we start at w0 and move to
the point

w = w0 − εg(w). (6)

3

Particularizing (5) to the variable w in (6) results in the epression

r(w) := r(w0) + gT(w)(−εg(w)) + e(w)

:= r(w0) − ε‖g(w)‖2 + e(w). (7)

In (7) the residual is of order ε2 and the squared gradient norm ‖∇Tr(w)‖2

is nonnegative. Thus, as long as ε is sufficiently small we have that

r(w) ≤ r(w0) (8)

The observation in (8) motivates the proposals of a recursive algorithm
to find the minimum of the empirical risk function. In this algorithm we
consider an iteration index k at which point the parameter takes the value
w(k). The parameter is then updated by following the negative gradient
so that the next iterate is

w(k + 1) = w(k)− εg(w(k)). (9)

Since (8) holds for all iterations k, subsequent iterates result in subsequent
reductions of the empirical risk r(w(k)). This argument can be formalized
to prove that under certain regularity assumptions on the empirical risk
w(k) converges to w∗. In practice, we set a total number of iterations K
and use x(K) as an approximation for w∗

2.1 Gradient Descent for Linear MMSE

For the particular case of linear MMSE the objective to be minimized is the
quadratic cost in (3). The gradient g(wk) is then given by the expression

g(wk) =
1
N

N

∑
i=1
−xi

(
yi − wT(k)xi

)
. (10)

The gradient descent algorithm for this particular case is obtained by
substituting (10) into (9) to obtain

w(k + 1) = w(k)− ε

N

N

∑
i=1
−xi

(
yi − wT(k)xi

)
. (11)

We address implementation of the recursion in (11) in the following task.

4

0 20 40 60 80 100
Iteration

0.9

1.0

1.1

1.2

1.3

M
SE

Mean squared error evolution

Step Size
0.03
0.3
1.84

0 20 40 60 80 100
Iteration

0.0

0.1

0.2

0.3

0.4

0.5

||w
-w

*||
^2

||w-w*||^2 evolution
Step Size

0.03
0.3
1.84

Figure 2. Gradient descent. Empirical risk r(w(k)) and squared distance to op-
timality ‖w(k) − w∗‖2 are shown as a function of the iteration index k for the
gradient descent algorithm implemented in Task 2. The choice of step size ε has
a significant effect on the convergence rate towards the optimum.

Task 2 Implement gradient descent for the data loaded in Task 1A.1. This
implementation is complicated by the fact that the range of GPA and SAT
scores have vast differences. To reduce this complication we perform data
normalization. This requires that we compute mean and variances. For
the particular case of SAT scores these are given by

¯SAT =
1
N

N

∑
i=1

SATi, var(SAT) =
1
N

N

∑
i=1

(
SATi − ¯SAT

)2
. (12)

Normalized SAT scores for each individual student i are then defined as

˜SAT =
(

SATi − ¯SAT
)/(

var(SAT)
)1/2

. (13)

The same normalization can be undertaken for high school and Penn
GPAs. Implement this normalization and use this normalized data to
implement gradient descent. Plot the value of the empirical risk r(w(k))
as a function of the iteration index k.

Use the expression in Task 1.4.3 to compute w∗ for this normalized data.
Plot the value ‖w(k)−w∗‖2 of the distance between iterates w(k) and the
optimal parameter w∗. Notice that these plot is possible because we have
access to the optimal argument w∗. This is not always the case.

This task requires that you try different values for the step sizes ε and
the total number of iterations K. The plots in Figure 2 show the empirical
risk r(w(k)) and the squared distance to optimality ‖w(k) − w∗‖2 as a
function of the iteration index k for different values of ε and K = 100. �

5

Observe that in Figure 2 the choice of step size ε has a significant ef-
fect on the convergence rate towards the optimum. The risk reduction
in (8) holds only when the step size ε is sufficiently small. This fact is
highlighted in Figure 2 by the curve with ε = 1.84. While convergence is
guaranteed for all sufficiently small ε, a very small stepsize results in slow
convergence. This is highlighted in Figure 2 by the curve with ε = 0.03.

3 Stochastic Gradient Descent

The gradient of the linear MMSE cost which we show in (10) is expressed
as an average over dataset entries (xi, yi). Indeed, to compute the gradi-
ent we evaluate xi(yi − wT(k)xi) for each data pair (xi, yi) and take the
average. This is a feature that is common to all empirical risks.

This is true because the empirical risk itself is an average. If we consider
the generic expression for r(w) in (1) the gradients of the empirical risk
are given by

g(w) =
1
N

N

∑
i=1

∂

∂w
`
(

yi, Φ(xi; w)
)

. (14)

The gradient g(w) is then an average of the gradients ∂(`(yi, Φ(xi; w))/∂w
that correspond to the evaluation of the loss `(yi, Φ(xi; w)) at each indi-
vidual data pair (xi, yi).

That the gradient is expressed as an average implies that computing gra-
dients of the empirical risk is expensive and unnecessary. It is expensive
because we need to compute gradients of the loss associated with each
individual data pair (xi, yi). When the dataset is large, this is a con-
siderable number of gradients that need to be computed. It is unneces-
sary because an average can be accurately approximated by considering
a smaller number of samples. This average of gradients over a smaller
number of samples is known as a stochastic gradient.

For a formal definition consider a random choice of B entries of the
dataset and define the stochastic gradient of the empirical risk as

ĝ(w) =
1
B

B

∑
i=1

∂

∂w
`
(

yi, Φ(xi; w)
)

. (15)

6

0 20 40 60 80 100
Iteration

0.85

0.90

0.95

1.00

1.05

M
SE

Mean squared error evolution
Step Size

0.03
0.3
1.18

0 20 40 60 80 100
Iteration

0.850

0.875

0.900

0.925

0.950

0.975

1.000

M
SE

Mean squared error evolution
Batch Size

8
64
512

Figure 3. Stochastic Gradient Descent. Empirical risk r(w(k)) as a function of
the iteration index k for the stochastic gradient descent algorithm implemented
in Task 3 for different batch sizes and step sizes. Larger batch sizes B and smaller
step sizes yield more regular convergence towards the optimum but increases the
overall computational cost.

The expression is the same as in (14) except that instead of having a
sum over the N entries of the dataset we have a sum over B randomly
chosen entries. Although not required by its definition, the presumption
is that B � N and that, as a consequence, the computational cost of
evaluating stochastic gradients is much smaller than the computational
cost of evaluating full gradients.

As we did in Section 2 with gradients, we can use stochastic gradients
in an iterative algorithm. Consider then an iteration index k and a step
size ε. At iteration k the parameter value x(k) is updated according to the
recursion

w(k + 1) = w(k)− εĝ(w(k)). (16)

Since we expect that stochastic gradients ĝ(w(k)) are close to the actual
gradients g(w(k)) we expect stochastic gradient descent iteration in (16)
to be similar to the gradient descent iteration in (9). Since (9) approaches
the optimal parameter w, we expect that the same is true of (16). This can
be proven to be true.

Task 3 Implement the stochastic gradient descent algorithm or the nor-
malized scholastic performance data of Task 2. Plot the value of the em-
pirical risk r(w(k)) as a function of the iteration index k.

This task requires that you try different values step sizes ε and batch

7

sizes. The plots in Figure 2 show the empirical risk r(w(k)) as a function
of the iteration index k for different values of ε and B. �

In Figure 3 the choice of step size ε and batch size B determine the ran-
domness of the empirical risk curves r(w(k)). For smaller batch sizes B
and larger step sizes ε the reduction of the empirical risk r(w(k)) has
more spurious ups and downs. The more regular convergence attained
by the use of larger batch sizes B or smaller step sizes ε comes at the
cost of increases in the computational cost. Either because each stochas-
tic gradient is more costly to compute – when the batch size increases
– or because we need more iterations to converge – when the step size
decreases.

3.1 The Expected Value of the Stochastic Gradient

In the definition of the stochastic gradient in (15), the entries in the batch
are chosen randomly. Thus, we can consider the expected value of the
stochastic gradient with respect to the choice of batch. This expectation
can be written as

E [ĝ(w)] = E

[
1
B

B

∑
i=1

∂

∂w
`
(

yi, Φ(xi; w)
)]

=
1
B

B

∑
i=1

E

[
∂

∂w
`
(

yi, Φ(xi; w)
)]

,

(17)

where in the second equality we exchanged the expectation and summa-
tion operation. Observe now that, by definition, the expectation of the
derivative of the loss is the average of the derivatives of the loss over all
data pairs,

E

[
∂

∂w
`
(

yi, Φ(xi; w)
)]

=
1
N

N

∑
i=1

∂

∂w
`
(

yi, Φ(xi; w)
)

. (18)

If we compare (19) with (14) we see that this is precisely the gradient of
the empirical risk,

E

[
∂

∂w
`
(

yi, Φ(xi; w)
)]

= g(w). (19)

8

Substituting (19) into (20) and simplifying terms we conclude that the
expected value of the stochastic gradient is the gradient itself,

E [ĝ(w)] =
B

∑
i=1

g(w) = g(w) . (20)

This fact gives an alternative explanation of the stochastic gradient algo-
rithm. Having E [ĝ(w)] = g(w) means that, on average, stochastic gradi-
ents point in the direction of the gradient. Thus, the stochastic gradient
descent iteration in (16) is, on average, moving iterates in a direction that
reduces the value of the empirical risk. It may be that at some iteration
the stochastic gradient takes us in the wrong direction. This does hap-
pen. As we see in Figure 3, the empirical risk grows in several iterations.
However, in expectation, the stochastic gradient is pointing in the right
direction. Therefore, more often than not, we see reductions in the value
of the empirical risk. This is why the general trend in Figure 3 is a reduc-
tion of the empirical risk. Even though the empirical risk may randomly
increase at several iteration indexes.

It is important to be aware (20), because its validity is the actual explana-
tion of why stochastic gradient descent works. In particular, observe that
(20) is true for any value of B, including B = 1. In this case the stochastic
gradient is simply

ĝ(w) =
∂

∂w
`
(

yi, Φ(xi; w)
)

. (21)

In this case we can’t argue that ĝ(w) is close to g(w) but we can still argue
that E [ĝ(w)] = g(w). It is possible to prove that an implementation of
stochastic gradient descent with individual samples as in (21) converges
to the optimal argument w∗. This fact can also be verified numerically.

A Appendix: Training Models with PyTorch

In this lab we have introduced ERM problems and we have studied gra-
dient descent and stochastic gradient descent algorithms. The latter is the
workhorse algorithm for solving learning problems. It bears emphasizing
that we have implemented stochastic gradient descent for a very simple
problem in which the loss is quadratic, the parametrization is linear, the

9

data is low dimensional, and the number of data samples available is not
too large. As we consider more complex problems with more involved
losses, more complex parameterizations, higher dimensional data, and
larger datasets, we will encounter three challenges:

(C1) Algorithms for solving ERM are finicky. Stochastic gradient descent
can be quite sensitive to the choice of parameters such as step and
batch sizes. Improvements upon stochastic gradient descent exist.
They can be less finicky but they are more difficult to implement.

(C2) Computing derivatives is time consuming and cumbersome. Linear
MMSE is simple and we can easily compute the derivative of the
loss with respect to w [cf. (10)]. But when we start looking at neural
networks, with several layers and several filters per layers – what-
ever layers and filters are, which we will learn in due course –, we
don’t want to go through the trouble of computing derivatives by
hand. We want them to be computed automatically.

(C3) Taking advantage of computational resources requires understand-
ing computational hardware. At some point we will encounter
problems where use of specialized computation units is necessary.
To take advantage of these resources we need to understand the
hardware and the operating system. This is knowledge we will not
have except for those of you that intend to specialize in hardware
and operating systems.

For these reasons it is convenient to use packages that implement the
minimization of (2). In this class we will use Pytorch. For that reason, we
ask that you complete the following task.

Task 4 Implement stochastic gradient using PyTorch. �

10

https://pytorch.org

B Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 One paragraph with task solution

Task 2 Plot of r(w(k)) versus k. Report ε

Task 2 Plot of ‖w(k)− w∗‖2 versus k. Report ε

Task 3 Plot of r(w(k)) versus k. Report ε and B

Task 4 Implement stochastic gradient using PyTorch.
Plot r(w(k)) versus k. Report ε and B

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 10% of your lab
grade.

11

	Empirical Risk Minimization
	Gradient Descent
	Gradient Descent for Linear MMSE

	Stochastic Gradient Descent
	The Expected Value of the Stochastic Gradient

	Appendix: Training Models with PyTorch
	Report

