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1 Images

Images are mathematically modeled as functions of two variables. These
variables represent the vertical coordinate m and the horizontal coordi-
nate n. These variables can be discrete or continuous but we will consider
them here to be discrete. In this case the coordinate pair (m, n) is called
a pixel. We restrict each pixel coordinate to be between 0 and N − 1. We
use X to denote the image and and x(m, n) to represent the value at pixel
(m, n). Pixels of an image are arranged in a matrix,

X =



x(0, 0) x(0, 1) · · · x(0, n) · · · x(0, N)
x(1, 0) x(1, 1) · · · x(1, n) · · · x(1, N)

...
...

...
...

x(m, 0) x(m, 1) · · · x(m, n) · · · x(m, N)
...

...
...

...
x(N, 0) x(N, 1) · · · x(N, n) · · · x(N, N)


. (1)

Thus, an image X is a matrix in which entries x(m, n) represent pixel
values.

The interpretation of this matrix is that pixel values x(m, n) represent the
luminance of the pixel. The luminance is how much light is reflected by
the pixel. This determines how bright the pixel appears in a black and

*In alphabetical order.
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Dataset: MNIST

Original source: h!p://yann.lecun.com/exdb/mnist/

The MNIST dataset contains 70,000 images of handwri!en digits (zero to nine)
that have been size-normalized and centered in a square grid of pixels. Each
image is a 28 × 28 × 1 array of floa#ng-point numbers represen#ng grayscale
intensi#es ranging from 0 (black) to 1 (white). The target data consists of one-
hot binary vectors of size 10, corresponding to the digit classifica#on categories
zero through nine. Some example MNIST images are shown below:

Informa!on: * name : MNIST * length : 70000

Input Summary: * shape : (28, 28, 1) * range : (0.0, 1.0)

Target Summary: * shape : (10,) * range : (0.0, 1.0)

We can also print a shorter, less detailed summary:

[3]: mnist.summary()

_________________________________________________________________
MNIST:
Patterns    Shape                 Range
=================================================================
inputs      (28, 28, 1)           (0.0, 1.0)
targets     (10,)                 (0.0, 1.0)
=================================================================
Total patterns: 70000
   Training patterns: 70000
   Testing patterns: 0
_________________________________________________________________

4/
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3/25/23, 8:29 AM3.3. The MNIST Dataset — conx 3.7.9 documentation

Page 2 of 23https://conx.readthedocs.io/en/latest/MNIST.html

Dataset: MNIST

Original source: h!p://yann.lecun.com/exdb/mnist/

The MNIST dataset contains 70,000 images of handwri!en digits (zero to nine)
that have been size-normalized and centered in a square grid of pixels. Each
image is a 28 × 28 × 1 array of floa#ng-point numbers represen#ng grayscale
intensi#es ranging from 0 (black) to 1 (white). The target data consists of one-
hot binary vectors of size 10, corresponding to the digit classifica#on categories
zero through nine. Some example MNIST images are shown below:

Informa!on: * name : MNIST * length : 70000

Input Summary: * shape : (28, 28, 1) * range : (0.0, 1.0)

Target Summary: * shape : (10,) * range : (0.0, 1.0)

We can also print a shorter, less detailed summary:

[3]: mnist.summary()

_________________________________________________________________
MNIST:
Patterns    Shape                 Range
=================================================================
inputs      (28, 28, 1)           (0.0, 1.0)
targets     (10,)                 (0.0, 1.0)
=================================================================
Total patterns: 70000
   Training patterns: 70000
   Testing patterns: 0
_________________________________________________________________

4/
36

3/25/23, 8:29 AM3.3. The MNIST Dataset — conx 3.7.9 documentation

Page 2 of 23https://conx.readthedocs.io/en/latest/MNIST.html

Dataset: MNIST

Original source: h!p://yann.lecun.com/exdb/mnist/

The MNIST dataset contains 70,000 images of handwri!en digits (zero to nine)
that have been size-normalized and centered in a square grid of pixels. Each
image is a 28 × 28 × 1 array of floa#ng-point numbers represen#ng grayscale
intensi#es ranging from 0 (black) to 1 (white). The target data consists of one-
hot binary vectors of size 10, corresponding to the digit classifica#on categories
zero through nine. Some example MNIST images are shown below:

Informa!on: * name : MNIST * length : 70000

Input Summary: * shape : (28, 28, 1) * range : (0.0, 1.0)

Target Summary: * shape : (10,) * range : (0.0, 1.0)

We can also print a shorter, less detailed summary:

[3]: mnist.summary()

_________________________________________________________________
MNIST:
Patterns    Shape                 Range
=================================================================
inputs      (28, 28, 1)           (0.0, 1.0)
targets     (10,)                 (0.0, 1.0)
=================================================================
Total patterns: 70000
   Training patterns: 70000
   Testing patterns: 0
_________________________________________________________________

4/
36

Figure 1. Images. An image is a function of two discrete indexes in which function
values represent luiminance. This information is arranged in a matrix X in which
the entry x(m, n) is the luminance at coordinates (m, n) [cf. (1)]. In this lab we
work with images that represent handwritten digits [cf. (3)].

white image. For that reason we do not represent images as functions.
We represent them as luminance colormaps; see Figure 1.

To represent color images we just consider several matrices with different
color contents. For instance, in a red, blue, and green (RGB) represen-
tation we have matrices XR, XG, and XB that represent the luminance
restricted to the red, blue, and green colors. This information can be
represented with a tensor,

X = [XR, XG, XB] (2)

In this tensor, each of the color matrices is called a channel.

1.1 Handwritten Digits

In this lab we work with black and white images that represent handwrit-
ten digits. In Figure 1 we show an image of a handwritten number 1 and
a handwritten number 3. The dataset we are given contains pairs (Xq, yq)
of images Xq and human annotations yq that identify the correct digits.
For the images in Figure 1, the dataset entries are

(Xq, yq) =
(
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, 1
)

.
(3)

The dataset contains Q =?? images.

Our mission, which we have accepted, is to train a machine learning sys-
tem that maps images to the corresponding digit. As it should be obvious
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by now, this requires that we introduce a proper kind of convolution. We
do that in the next section.

Task 1 Load the data from https://dsd.seas.upenn.edu and visu-
alize three images. �

2 Shifts in Space

Before defining convolutions to process images we have to introduce ver-
tical and horizontal shift operators. We name these operators SV and SH

and define them as the operators whose action on an image X results in
a shifting of vertical and horizontal coordinates, respectively. Thus, if ap-
plying the vertical shift SV to the image X yields the image U10 = SVX,
the entries u10(m, n) of the vertically shifted image U10 are

u10(m, n) = x(m− 1, n), when U10 = SVX. (4)

Likewise if applying the vertical shift SH to the image X yields the image
U01 = SVX, the entries u01(m, n) of the horizontally shifted image U01 are

u01(m, n) = x(m, n− 1), when U01 = SHX. (5)

In (4) and (5) we adopt the convention that x(m, n) = 0 when either of
the arguments m or n are negative.

To understand (4) and (5) it is convenient to represent them in matrix
form. Applying the vertical shift to the image in (1) yields the matrix

SVX=



0 0 · · · 0 · · · 0
x(0, 0) x(0, 1) · · · x(0, n) · · · x(0, N)

...
...

...
...

x(m, 0) x(m, 1) · · · x(m, n) · · · x(m, N)
...

...
...

...
x(N−1, 0) x(N−1, 1) · · · x(N−1, n) · · · x(N−1, N)


.

(6)
In the vertically shifted image U10 = SVX all of the rows of the matrix
X are shifted down. We fill the first row with zeros because there are no
pixels that can be shifted into the first row.
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When we apply the horizontal shift SH to the image X in (1) we obtain the
image

SHX=



0 x(0, 0) · · · x(0, n) · · · x(0, N−1)
0 x(1, 0) · · · x(1, n) · · · x(1, N−1)
...

...
...

...
0 x(m, 0) · · · x(m, n) · · · x(m, N−1)
...

...
...

...
0 x(N, 0) · · · x(N, n) · · · x(N, N−1)


.

(7)
In the horizontally shifted image U01 = SHX all of the columns of the
matrix X are shifted right. We fill the first column with zeros because
there are no pixels that can be shifted into the first column.

2.1 Shift Compositions and Spatial Shift Sequences

As in the case of time signals, image shifts can be composed. For instance,
applying the vertical shift twice yields the signal

U20 = SV U10 = S2
V X. (8)

This is a signal in which the entries are u20(m, n) = x(m− 2, n). That is,
the image U20 is one in which the pixels are shifted two pixels down.

As another example consider the application of l shifts in the horizontal
direction. We can define define this recursively as

U0l = SH U0(l−1) = S2
H U0(l−2) = . . . = S l−1

H U01 = S l
H X. (9)

This is a signal in which the entries are u0l(m, n) = x(m, n− l). That is,
the image U0l is one in which the pixels are shifted l pixels to the right.

In general, we can compose any number of vertical shifts with any num-
ber of horizontal shifts. This results in the definition of the spatial shift
sequence composed of images

Ukl = Sk
VS l

HX. (10)

This is an image in which the entries are ukl(m, n) = x(m− k, n− l). That
is, the image Ukl is one in which the pixels are shifted k pixels down and
l pixels to the right.
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It is important to note that the spatial shift sequence in (10) can be com-
puted recursively. To do that we need to define the vertical and horizontal
recursions

Ukl = SVU(k−1)l , Ukl = SHUk(l−1), (11)

with the initial condition U00 = X. Recursive computation of the spatial
diffusion sequence is important in practical implementations.

2.2 Negative Shifts

A negative vertical shift is a shift that moves the pixels up. We denote
this shift by S−1

V and define it as the shift that when acting on the image
X yields the image U(−1)0 = S−1

V X whose entries are given by

u(−1)0(m, n) = x(m + 1, n), when U(−1)0 = S−1
V X. (12)

In this definition we adopt the convention that x(N + 1, n) = 0. This
means that when applying the negative shift S−1

V we fill the last row of
U(−1)0 with zeros. This is because there are no entries of X that can be
shifted into this row.

Likewise a negative horizontal shift is a shift that moves the pixels left.
We denote this shift by S−1

H and define it as the shift that when acting on
the image X yields the image U0(−1) = S−1

H X whose entries are given by

u0(−1)(m, n) = x(m, n + 1), when U0(−1)0 = S−1
H X. (13)

In this definition we adopt the convention that x(m, N + 1) = 0. This
means that when applying the negative shift S−1

H we fill the last column
of U(−1)0 with zeros. This is because there are no entries of X that can be
shifted into this column.

As is the case of the positive shifts SV and SH, the negative shifts S−1
V and

S−1
H can be composed. It is also possible to compose the positive vertical

shift SV with the negative horizontal shift S−1
H . The converse composition

of the positive horizontal shift SH with the negative vertical shift S−1
V is

also possible. We can therefore generalize (10) into

Ukl = Sk
VS l

HX. (14)

This is, in fact, the exact same equation as (10). The difference is that we
now allow for k and l to be positive or negative numbers. The entries of
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Ukl are ukl(m, n) = x(m− k, n− l). When k is positive this entails shifting
pixels down and when k is negative this entails shifting pixels up. When
l is positive this entails shifting pixels to the right and when k is negative
this entails shifting pixels to the left.

3 Convolutions in Space

A spatial convolution is a linear combination of the components of the
spatial diffusion sequence in (14). For a formal definition we consider a
filter range K and define filter coefficients hkl for k and l ranging from −K
to K. The outcome of applying the filter with coefficients hkl to the image
X is the image

Y =
K

∑
k=−K

K

∑
l=−K

hkl Sk
V S l

H X. (15)

Observe that in this definition we allow for positive and negative shifts.
For simplicity we assume that the maximum number of shifts in either
direction is the same. They can be made different, but it is standard
practice to keep them equal.

We note that the total number of filter coefficients of a two dimensional
convolution is (2K + 1)2. These coefficients are arranged in a matrix H.

Task 2 Write a filter object and endow it with a function that takes an
image X as an input and returns as an output the result of convolving the
image with the filter H that is stored as an attribute of the class. Make
sure that this function can operate on a batch of input images �

Task 3 Define filters H with entries hkl = 1/((2K + 1)2). Use the class in
Task 2 to instantiate these filters with K = 2, K = 4, and K = 8. Apply
these filters to the images you visualized in Task 1. What is the effect of
applying these filters? �

Task 4 Pytorch comes with its own function for computing two dimen-
sional convolutions. Consider the same filters of Task 3 with K = 8.
Execute your own convolution code and the code that comes built in in
Pytorch to compute convolutions for a batch of B = 100 images. Compare
the execution times. �
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In solving Task 4 you must have noticed that the Pytorch code is much
faster. This is because the Pytorch convolution function is just a wrapper
that calls a compiled subroutine written in C. If this were the 1990’s we
would say that “true men code in C,” which was indeed a quip that was
common in the 1990’s. Lucky for us all we live in a time when we do
not require men to be tough, nor women to stay away from engineering,
nor persons to define themselves as either men or women. So let us
just remember that industry level data sciences still relies on low level
languages. Python and Pytorch are prototyping languages.

We will use the Pytorch convolution function in the remainder of Lab 4.

4 Filterbanks

To use convolutional filters in classification tasks we will build convolu-
tional neural networks (CNNs). An intermediate step is to use the energy
content of the outputs of a convolutional filterbank.

Begin then by defining the energy of an image as the sum of the squares
of the values of each pixel,

‖X‖2 =
M−1

∑
m=0

M−1

∑
n=0

x2(m, n). (16)

Continue by defining a collection of G filters Hg each of which contains
filter coefficients hg

kl . Processing the input image X with each of these
filters produces the output feature,

Zg =
K

∑
k=−K

K

∑
l=−K

hg
kl S

k
V S l

H X. (17)

Each of the Zg features is an image. This set of images has to be converted
into a set of class scores as we did in Lab 2C. We will do that in two steps.
The first step is to create a vector that groups the energies of the outputs
of each filterbank

x1 =
[ ∥∥Z1∥∥2;

∥∥Z2∥∥2; . . . ;
∥∥ZG∥∥2

]
. (18)

The second step is to process this vector with a readout layer. This is just
a multiplication with a matrix A that matches the dimension G of the
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filterbank with the number of classes C,

x2 = Ax1. (19)

Each of the entries of x2 is a class score. We will train this filterbank to
correctly predict class labels.

Task 5 Create a filterbank class. In this class the filter coefficients Hg the
matrix A are attributes. The class has a method that takes an image X
as an input and implements the filterbank equations in (17) - (19). The
method returns the vector of scores x2 as an output.

Task 6 Split the handwritten digit dataset into train and test sets. Instan-
tiate the class of Task 5 to train a filterbank that classifies images to the
corresponding digit class. Use the crossentropy loss as the optimization
objective.

Evaluate the test loss and the percentage of images that are correctly clas-
sified.
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5 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Do not report

Task 2 Do not report

Task 3 One paragraph with a qualitative description
of the filters’ outputs

Task 4 Do not report

Task 5 Do not report

Task 6 Number of images in the train and test set.

Train and test loss.

Percentage of images correctly classified.

Number of images in the train and test set. Training loss Test loss

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 10% of your lab
grade.
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