
Image Classification

Juan Elenter, Ignacio Hounie, and Alejandro Ribeiro*

April 2, 2023

1 Convolutional Neural Networks in Space

To process images we use spatial Convolutional Neural Networks (CNNs).
Spatial CNNs are defined as compositions of layers, which are themselves
compositions of spatial convolutional filters with pointwise nonlineari-
ties. Thus, for a network with L layers we consider L different filters.
The filter at Layer ℓ has coefficients hℓ,uv that are entries of the matrix
Hℓ. We then define the input output relationship of the CNN through the
recursion

Xℓ = σ
(

Zℓ

)
= σ

(
Kℓ

∑
u=−Kℓ

Kℓ

∑
v=−Kℓ

hℓ,un Su
V Sv

H Xℓ−1

)
, (1)

which we initialize with X0 = X and terminate at Layer L. We further
define H as a tensor that groups all of the filters of all of the layers and
write the output of the CNN as,

Φ(X;H) = XL. (2)

This is the same architecture that we used to define CNNs for time sig-
nals, which is also the same architecture we used to define GNNs; see
Figure 1. The differences between these three different types of CNNs is
the use of convolutions that are adapted to the specific structure of the
input. We used one dimensional convolutions to process signals in time,

*In alphabetical order.

1



Layer 1

Layer 2

Layer 3

X0 = X

Z1 = ∑
k,l

h1,kl Sk
V S l

H X0 X1 = σ
(

Z1

)Z1

Z2 = ∑
k,l

h1,kl Sk
V S l

H X1 X2 = σ
(

Z2

)Z2

Z3 = ∑
k,l

h1,kl Sk
V S l

H X2 X3 = σ
(

Z3

)Z3

X1

X1

X2

X2

X3 = Φ(X;H)

Figure 1. A Convolutional Neural Network (CNN) with three layers. To process
images we use spatial CNNs. Spatial CNNs are compositions of layers, which are
themselves compositions of a spatial convolutions with pointwise nonlinearities.
[cf. (2)]. This computation structure is shared with time CNNs and GNNs. They
differ in the adaptation of the filter to the specific domain.

graph convolutions to process graph signals, and we are now using two
dimensional convolutions to process images.

In case it is worth repeating a third time, the recursion in (2) begins at
Layer 1 where the input image X = X0 is processed by the convolutional
filter Hℓ. This produces the intermediate output Z1 that is passed through
the pointwise nonlinearity σ(·) to produce the Layer 1 output X1. This
image is now passed onto Layer 2 where it is processed with the con-
volutional filter H2 and the pointwise nonlinearity σ(·). The output of
Layer 2 is passed on to Layer 3 where we repeat the process of applying
a convolutional filter, H3 in this case, and a pointwise nonlinearity. If, as

2



is the case of Figure 1, the CNN has L = 3 layers, the output of Layer 3 is
declared to be the output of the CNN.

1.1 Layers with Multiple Features

As we did for one dimensional CNNS and GNNs, we increase the repre-
sentation power of two dimensional CNNs with the addition of multiple
features per layer. To explain this, we introduce the notation H ⋆ X to
denote the spatial convolution of filter H with image X,

Z = H ⋆ X =
K

∑
k=−K

K

∑
l=−K

hkl Sk
V S l

H X. (3)

With this notation the CNN recursion in (2) can be written as

Xℓ = σ
(

Zℓ

)
= σ

(
Hℓ ⋆ Xℓ−1

)
. (4)

In a CNN with multiple features, each layer processes multiple images
in parallel to produce a number of images at the output. To write this
formally we let each layer produce as an output a collection of Fℓ features
Xg
ℓ . Each of these features is an image. These features are produced by

processing the Fℓ−1 features X f
ℓ−1 that are output by Layer ℓ− 1.

The mapping from features X f
ℓ−1 into features Xg

ℓ is determined by a col-
lection of convolutional filters H f g. The specific relationship is

Xg
ℓ = σ

(
F

∑
f=1

H f g ⋆ X f

)
. (5)

The expression in (5) is such that all input features X f can affect all output
features Xg. The influence of input X f on output g is the convolution
H f g ⋆ X f . All of the convolutions for a fixed output feature index g are
summed and then passed through a pointwise nonlinearity.

1.2 Spatial Convolutional Neural Network Specification

To specify a CNN we need to specify the number of layers L and the
characteristics of the filters that are used at each layer. The latter are the

3



number of filter taps Kℓ and the number of features Fℓ at the output of
the layer. The number of features F0 must match the number of features
at the input and the number of features FL must match the number of
features at the output. Observe that the number of features at the output
of Layer (ℓ− 1) determines the number of features at the input of Layer
ℓ.

Task 1 Program a class that implements a spatial CNN with L layers.
This class receives as initialization parameters a CNN specification con-
sisting of the number of layers L and vectors [K1, . . . , KL] and [F0, F1, . . . , FL]
containing the number of taps and the number of features of each layer.
Use ReLU activations.

Endow the class with a method that takes an input feature X and pro-
duces the corresponding output feature Φ(X;H). ■

We have provided two solutions of Task 1. In the first solution we use our
own implementation of the convolutional filter. In the second implemen-
tation we just call the Pytorch implementation. We do that because the
Pytorch function is a wrapper that calls a C implementation of convolu-
tions with multiple features. This is numerically more efficient.

Task 2 Instantiate a CNN with 1 layer. In this CNN we have K1 = 1,
F0 = 3, and F1 = 3. Set the filters to

H f 1 =

 1 1 1
1 1 1
1 1 1

 , H f 2 =

 −1 0 1
−1 0 1
−1 0 1

 , H f 3 =

 −1 −1 −1
0 0 0
1 1 1

.

(6)
Create an input signal made up of three different images that correspond
to the same digit. Process these input with the CNN and plot the output.
Give some interesting observations. ■

2 Pooling

As we did for signals in time, we define a pooling operator to reduce
dimensionality. The procedures are analogous except that when we im-

4



plement pooling in images we need to average in the horizontal and ver-
tical direction. For instance average pooling is an average over a square
window with ∆ pixels in each direction,

x(u, v) =
1

∆2

(
m∆+(∆−1)

∑
u=m∆

n∆+(∆−1)

∑
v=n∆

w(m, n)

)
. (7)

Likewise, max pooling chooses the maximum value over a square win-
dow with ∆ pixels in each direction,

x(u, v) = max
u∈[m∆, m∆+(∆−1)]

max
v∈[n∆, n∆+(∆−1)]

w(m, n) . (8)

Max pooling is the most common choice in practice but average pooling
is also popular. As is the case of signals in time, pooling is effective when
the elements that are being pooled are similar. In such case, there is not
much difference between using max or average pooling.

Task 3 Modify the CNN of Task 1 to incorporate pooling. This can be
done by modifying the method that implements convolutional layers to
incorporate the pooling operation.

As in any CNN the initialization parameters include the number of layers
L along with vectors [K1, . . . , KL−1] and [F0, F1, . . . , FL−1]. These vectors
contain the number of taps Kℓ of the filters used at each layer and the
number of features Fℓ at the output of each layer.

Since we are incorporating pooling the initialization parameters must also
include the vector [N0, N1, . . . , NL] containing the dimension Nℓ of the
features at the output of each layer. Notice that N0 matches the dimension
of the input signal.

The forward method of this class takes a tensor X in which each slice is
an image with N0 × N0 pixels. The total number of slices in this tensor is
F0.

Use relu nonlinearities in all layers. Use average pooling in all convolu-
tional layers. ■

Task 4 Modify the CNN of Task 3 to incorporate a readout layer. This
readout layer is the same as the readout layer that we implemented for
time convolutions in Lab 2C.

5



■

Task 5 Instantiate the CNN of Task 4 with 2 convolutional layers, tapsK0 =
K1 = 1, features [1, 4, 8], and feature dimensions [28, 14, 7].

Use this CNN to train a classifier for digit classification. Remember that
this requires splitting the dataset into train and test sets. Use a learning
rate of 0.01, batch size 128, and train for 5 epochs. Evaluate the train loss,
the test loss, and the classification accuracy. ■

6



3 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Do not report

Task 2 One paragraph with observations

Task 3 Do not report

Task 4 Do not report

Task 5 Report training loss

Task 5 Report test loss

Task 5 Report relative classification error

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 10% of your lab
grade.

7


	Convolutional Neural Networks in Space
	Layers with Multiple Features
	Spatial Convolutional Neural Network Specification

	Pooling
	Report

