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1 Dynamical Systems

A dynamical system is a system that evolves in time. will consider here a
state vector x(t) and a control action u(t). In a dynamical system the state
at time t + 1 is given by

x(t + 1) = f (x(t), u(t)). (1)

The interpretation of (1) is that the state of the system x(t) and the control
action u(t) determine the state of the system at time t + 1. Our goal is
to choose control actions u(t) to manipulate the state trajectory x(t) to
satisfy some stated goal.

We point out that the system in (1) is time invariant, deterministic, and
memoryless. Dynamical systems may also have memory, be stochastic, or
time varying.

1.1 Circuit Navigation

An example of a time invariant, deterministic, and memoryless dynami-
cal system is illustrated in Figure 1. Shown in this figure are trajectories

*In alphabetical order.
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Figure 1. Circuit Navigation. We observe trajectories of a car that is driven along
a circuit. Shown here are observed positions pq(t) for some trajectories. For each
trajectory we also observe velocities vq(t) and accelerations a(t).

that we observe as a car is driven along a circuit. A simple characteriza-
tion of a car is to model it as an ideal point mass whose acceleration we
control. Thus, the state of the system at time t includes the position p(t)
and the velocity v(t) of the car. Positions and velocities are both vectors
with horizontal and vertical coordinates. We therefore write the state of
the car as,

x(t) = [ p(t); v(t) ] = [ pH(t); pV(t); vH(t); vV(t) ]. (2)

The control action of the car is the acceleration a(t). As is the case of
positions and velocities, the acceleration contains horizontal and vertical
components. We therefore write the control action as

u(t) = a(t) = [ aH(t); aV(t) ]. (3)

As we have assumed that the car is an ideal point mass, we can readily
write the dynamical system using the laws of motion. To do so we just
need to specify the sampling time Ts that elapses between subsequent
time instances and write,

p(t + 1) = p(t) + Tsv(t) +
T2

s
2

a(t),

v(t + 1) = v(t) + Tsa(t). (4)
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This is true if the acceleration a(t) is maintained between times tTs and
(t + 1)Ts. It just follows from the definitions of velocity and acceleration.

In reality, the dynamics of a car are more complex than the dynamics of
an ideal point mass. The laws of motion in (4) are therefore a model of the
real dynamical system.

Task 1 Load the data from this link.. This data contains Q = 10 trajec-
tories, which correspond to different laps of the circuit shown in Figure
1. For each of these trajectories we have positions pq(t), velocities vq(t),
and accelerations aq(t) for times t ranging from t = 0 to t = T = 10s. Po-
sitions are measured in meters (m), velocities in meters per second (m/s),
and accelerations in meters per second squared (m/s2). The sampling
time is Ts = 0.05s.

Plot the positions pq(t) for some chosen trajectories. �

1.2 Model Predicted States

We expect the model in (4) to be a reasonable approximation of the actual
car dynamics. Let us test this expectation.

As a first figure of merit we consider the state predictions that the model
makes. For a given trajectory q and a given point in time t we consider
the observed state of the car xq(t) and the control action uq(t). We then
use the ideal point mass model in (4) to predict the state at time t + 1,

p̂q(t + 1) = pq(t) + Tsvq(t) +
T2

s
2

aq(t),

v̂q(t + 1) = vq(t) + Tsaq(t). (5)

We compare predicted positions p̂q(t + 1) and predicted velocities v̂q(t +
1) with observed positions pq(t + 1) and observed velocities vq(t + 1) to
test the accuracy of the model in (4).

Task 2 For a trajectory xq(t) define the state estimation errors as

eq(t) = ‖pq(t)− p̂q(t)‖+ ‖vq(t)− v̂q(t)‖. (6)
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Plot trajectory errors eq(t) for some trajectories. Compute and plot the
average error ēq(t) = (1/Q)∑Q

q=1 eq(t). Compute the average error over

time ¯̄eq(t) = (1/T)∑T
t=1 ēq(t). �

1.3 Model Predicted Trajectories

The errors in Task 2 are small. This is an indication that the ideal point
mass model is accurate. To further test the accuracy of this model we
compare observed trajectories with model predicted trajectoriesThis en-
tails selecting the actions aq(t) of a particular trajectory to generate the
model predicted trajectory as

p̂q(t + 1) = p̂q(t) + Tsv̂q(t) +
T2

s
2

aq(t),

v̂q(t + 1) = v̂q(t) + Tsaq(t). (7)

Observe how in this expression we use the observed accelerations aq(t) as
control actions to generate the trajectory x̂(t) = [p̂(t); v̂(t)] predicted by
the model in (4). This differs from (5) in which state predictions at time
t + 1 depend on the state that is observed at time t. In (7) we compound
predictions.

Comparing x̂(t) with x(t) gives an alternative measurement of the accu-
racy of the ideal point mass model in (4).

Task 3 To compare trajectories xq(t) with model predicted trajectories
x̂(t) we define the position errors

eq(t) = ‖pq(t)− p̂q(t + 1)‖. (8)

Plot trajectory errors eq(t) for some trajectories. Compute and plot the
average error ēq(t) = (1/Q)∑Q

q=1 eq(t).

Plot the positions pq(t) along with the predicted positions p̂(t) for some
chosen trajectories.

These plots are likely unexpected. Comment. �

The main conclusion of Task 3 is summarized in Figure 2. We see that the
trajectories generated by the model deviate from the observed trajectories.
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Figure 2. Trajectories and Model Predicted Trajectories. We compare observed tra-
jectories with trajectories generated by the ideal point mass model in (4). As time
progresses, model mismatch errors accumulate. This is a distinctive challenge of
dynamical systems.

This is an indication that the model is inaccurate. It is also important to
observe that the errors accumulate over time. We see that this is true
because as time progresses the difference between observed trajectories
and predicted trajectories grows.

2 Model Learning

To mitigate the limitations of the ideal point mass model we can use
observed trajectories to learn a more accurate model. To that end we
consider a linear parameterization to predict the state at time t + 1 given
observations of the state and control input at time t,

x̂(t + 1) = Ax(t) + Bu(t) (9)

In this equation the matrices A and B are parameters that we will learn.
These parameters map the observed state x(t) and the observed control in-
put u(t) into a prediction x̂(t + 1) of the next state.

The prediction x̂(t + 1) made by (9) is, in general, different from the actual
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state x(t + 1) observed at time t + 1. We therefore seek parameters A
and B that make predictions and reality as close as possible. For a loss
function `(x(t + 1), x̂(t + 1)) this gives the empirical risk minimization
(ERM) problem

(A∗, B∗) = argmin
A,B

1
Q

Q

∑
q=1

1
T

T

∑
t=1

`
(

x(t + 1), x̂(t + 1)
)

= argmin
A,B

1
Q

Q

∑
q=1

1
T

T

∑
t=1

`
(

x(t + 1), Ax(t) + Bu(t)
)

. (10)

This problem differs from standard ERM in that we sum over trajectories
and points in time. This is a minimal difference and the same techniques
we use for solving standard ERM can be used to solve (10).

Task 4 Create an object to represent the linear dynamical system model
in (9). Instantiate this object to represent a car navigating a circuit. This
requires a state x(t) with the car’s position and velocity [cf. (2)] and a
control action u(t) representing the car’s acceleration. [cf. (3)].

Use the trajectories loaded in Task 1 to train a model for a car navigating
a circuit. This training entails solving (10). Use an L1 loss and remember
to save some trajectories for validation. We recommend that you save a
single trajectory for this purpose.

Report the training loss and the test loss. �

The test loss that we observe in Task 4 is smaller than the average error
that we observed in Task 2. This indicates that the learned model is better
than the ideal point mass model.

Observe that the loss computed in Task 4 compares the model’s state
predictions in (9) with observed states. As we did in Section 1.3 we may
also consider predicted trajectories. This are defined as

x̂(t + 1) = Ax̂(t) + Bu(t). (11)

In both, (9) and (11), we apply observed actions u(t). The difference is
that in (9) we start from the observed state x(t) whereas in (11) we start
from the predicted state x̂(t). Concatenating state predictions results in
the accumulation of errors. We evaluate this next.
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Figure 3. Trajectories Predicted by Learned Model. We compare observed trajec-
tories with trajectories generated by the linear model with the parameters learned
in Task 4. The model is more accurate than the ideal point mass model of Figure
2 but we still observe accumulation of errors.

Task 5 As in Task 3 we compare trajectories xq(t) with model predicted
trajectories x̂q(t). We do that by evaluating the position error eq(t) de-
fined in (8). Plot trajectory errors eq(t) for test trajectories. If you have
more than one test trajectory, compute and plot the average error ēq(t) =
(1/Q)∑Q

q=1 eq(t).

Plot the positions pq(t) along with the predicted positions p̂(t) for a test
trajectory.

Compared the learned model with the ideal point mass model. �

The main outcome of Task 5 is Figure 3. We see that the trajectories
predicted by the learned model are more accurate. We still observe some
deviation between the actual trajectory and the trajectory predicted by the
model. As we said, this is a fundamental feature of dynamical systems. A
more accurate model mitigates but does not eliminate the accumulation
of errors. But in this case the deviation is much smaller.

This learned model is a good starting point for controlling the car. We
explain how to do this in the next section.
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3 Dynamical Systems Control

We are now given control of the car. This entails finding a sequence of
actions u(t) that navigates the circuit. This means that our goal is to find
a policy π that maps states x(t) to control actions u(t),

π : u(t) = π(x(t)), (12)

such that the state trajectory x(t) of the dynamical system satisfies some
given specifications.

The particular control problem we consider is to follow a reference trajec-
tory xR(t). To formulate this problem mathematically consider a dynam-
ical system in which the state at time t = 0 is given and set to x(0) = x0.
We say that x0 is the initial condition of the dynamical system. Starting
from this initial condition we generate a trajectory xπ(t) by continuous
execution of the policy π. In this trajectory the control action at time t is
u(t) = π(xπ(t)). Since the evolution of the dynamical system follows (1),
the trajectory xπ(t) is generated by the recursion,

xπ(t + 1) = f
(

xπ(t), π
(
xπ(t)

))
. (13)

To follow the reference trajectory xR(t) we introduce a loss ` to compare
the reference trajectory xR(t) with trajectories xπ(t) generated by different
policies π. We then search of the optimal policy,

π∗ = argmin
π

1
T

T

∑
t=1

`
(

xR(t), xπ(t)
)

. (14)

This optimization problem appears similar to empirical risk minimiza-
tion problems we encountered in earlier labs. It appears in particular,
similar to (10). This similarity is misleading. The problems are, in fact,
fundamentally different.

The fundamental difference between (14) and standard risk minimization
is that the goal in (14) is to find policies π(x(t)) that generate suitable
trajectories and in a dynamical system the choice of action at time t influ-
ences the trajectory of the system at all future times s > t. Conversely,
the state of the system at time t depends on all of the actions that were
chosen at times s < t.
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To explain this point better, start at time t = 0 and recall that the initial
condition xπ(0) = x0 is known. For this initial conidition and choos-
ing actions under policy π, the control action at time t = 0 is u(0) =
π(xπ(0)) = π(x0). We now have the state xπ(0) given and the control
policy u(0) chosen. Since the evolution of the dynamical system follows
(1) the state xπ(1) at time t = 1 is

xπ(1) = f
(

x(0), π
(
x(0)

))
= f

(
x0, π

(
x0
))

. (15)

We emphasize that In (15) the state as xπ(1) depends on the policy. Dif-
ferent policy choices π result in different states xπ(1).

We now consider the next control action which is to be taken at time t = 1.
Since the state of the system is xπ(1), the choice of action under policy π
is u(1) = π(xπ(1)). With state given and policy chosen, the dynamical
system now moves to the state

xπ(2) = f
(

xπ(1), π
(
xπ(1)

))
. (16)

This state depends on the control action u(1) = π(xπ(1)). It also depends
on the choice of control action u(0) = π(x(0)) because the state xπ(1)
depends on this choice.

We repeat the procedure at time t = 2. The system is in state xπ(2), we
choose action u(2) = π(xπ(2)) and the dynamical system transitions into
state

xπ(3) = f
(

xπ(2), π
(
xπ(2)

))
. (17)

We see here that the state of the system at time t = 3 depends on all of
the three actions chosen by the policy π at times s < 3. Conversely, we
see that the action chosen at time t = 0 affects all of the states observed
at times s > 0. This propagation of dependencies between states and
actions continues as we keep making control choices u(t) = π(xπ(t))
that depend on states xπ(t) that depend on all of the control choices
u(s) = π(xπ(s)) taken at previous times s < t.

To emphasize that (14) is a problem in which policy choices π(xπ(t)) are
coupled across time we rewrite it to make the evolution of the dynamical
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f
(

x(t), π(xπ(t))
)xπ(t)

π(xπ(t))
xπ(t + 1)

argmin
π

1
T

T

∑
t=1

`
(

xR(t), xπ(t)
)

Figure 4. Optimal Control. The dynamical system is represented by the feedback
loop at the top. Current states and control inputs are mapped to future states,
which then become current states at the next time index. The controller is repre-
sented by the feedback loop at the bottom. We observe the trajectories generated
by different policies and choose the one that solves (18). To execute this controller
me must know the true behavior of the dynamical system.

system explicit,

π∗ = argmin
π

1
T

T

∑
t=1

`
(

xR(t), xπ(t)
)

,

with xπ(t + 1) = f
(

xπ(t), π
(
xπ(t)

))
,

xπ(0) = x0 . (18)

This is the same problem in (14), where we write the evolution of the
dynamical system and the initial condition explicitly. We say that π∗

is the optimal control policy and we refer to (18) as the optimal control
problem.

The optimal control strategy implied by (18) is illustrated in Figure 4.
When we specify the policy π, the trajectory of the system is given. This
is signified by the feedback loop at the top in which the state input xπ(t)
and the control input π(xπ(t)) produce the state output xπ(t+ 1). We say
that this is a feedback loop, because the state output xπ(t + 1) becomes
an input to the dynamical system at time t + 1.

The trajectory of the system is also an input to the block that chooses
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the optimal control policy. This is signified by the feedback loop at the
bottom. The controller observes the effect of different policies and chooses
the one that solves (4). We say that this block is a controller because it
chooses the control policy.

3.1 Model Based Optimization

To find the optimal control policy π∗ we need to solve the optimization
problem in (18). In this problem, control actions π(xπ(t1)) and π(xπ(t2))
chosen at different times are coupled. They both influence the state of the
dynamical system at times s > t1 and s > t2. This coupling notwithstand-
ing, we can still compute gradients of the loss to implement a descent
algorithm to find the optimal control policy π∗.

Here we encounter a roadblock: The true behavior of the dynamical sys-
tem is unknown. We circumvent this roadblock with the used of a model.
This could be the model in (4) based on our understanding of the laws
of motion or the model we learned in Section 2. We use the latter which
turned out to be more accurate.

Consider then the learned dynamical system in (11) when controlled by
the policy π. This dynamical system evolves according to

x̂π(t + 1) = Ax̂π(t) + Bπ
(
x̂π(t)

)
. (19)

In (19) we use x̂π(t) to denote the state of the system. This notation em-
phasizes that the trajectory results from the execution of actions π(x̂π(t))
on the model in (11).

We search now for policies that are optimal at controlling the model. They
are given by the solution of the optimization problem,

π∗ = argmin
π

1
T

T

∑
t=1

`
(

xR(t), x̂π(t)
)

,

with x̂π(t + 1) = Ax̂π(t) + Bπ
(
x̂π(t)

)
,

x̂π(0) = x0 . (20)

The problems in (18) and (20) are optimal control problems for different
dynamical systems. The formulation in (18) is on the actual dynamical
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Ax̂π(t) + Bπ
(
x̂π(t)

)x̂π(t)

π(x̂π(t))
x̂π(t + 1)

argmin
π

1
T

T

∑
t=1

`
(

xR(t), x̂π(t)
)

Figure 5. Model Based Optimization. As in Figure 4 we represent the dynamical
system and the controller. Here, however, we work with the model, not the true
system [cf. (20)]. This yields a policy optimization problem that we can solve,
because the model is known. The price we pay is that the policy is optimal for
the model, not the true system.

system that determines the car’s motion. We can’t solve this problem
because we do not know the function f . The problem in (20) is an optimal
control problem on the learned model of the dynamical system. We can
solve this problem because we have access to A and B.

A scheme describing (20) is shown in Figure 6. As in Figure 4 we have a
feedback loop at the top representing the dynamical system and a feed-
back loop at the bottom representing the controller. The difference is that
in Figure 6 the top feedback loop represents a model of the true dynam-
ical system. The feedback loop at the bottom solves (20). This finds a
policy that is optimal at controlling the model. Which need not be, in-
deed, it most likely is not, the same policy that is optimal at controlling
the true dynamical system.

Task 6 Solve the optimization problem in (20) for the dynamical system
defined by the parameters A and B learned in Task 4. Use as a reference
trajectory one of the trajectories that you used for validations in Task 4.
Use MSE loss as figure of merit.

The solution of this optimization problem is a sequence of actions u(0 :
T − 1) with u(t) = π∗(x̂π(t)). �
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Figure 6. Model Based Optimization.

3.2 Evaluation of Control Policy

Solving optimal control on a model of a real system is not the same as
solving optimal control on the real system. In the case of navigating a
circuit, we saw in Task 5 that the learned model is accurate. We therefore
expect that the solution of (20) is a good approximation to solving (18).
We test this expectation here.

To test this expectation we execute the control actions u(0 : T − 1) that
we found as solutions of (20) in Task 6 in the actual dynamical system
f . Since we do not have access to an actual car, we will test actions
u(0 : T − 1) in a car simulator.

Task 7 Download the car simulator from this link. Execute the control
actions u(0 : T − 1) found as solutions of (20) in Task 6. Evaluate and
plot the MSE loss between the generated trajectory and the reference tra-
jectory. �

The main conclusion of Task 7 is summarized in Figure 6. This conclusion
is that model based optimization fails at controlling the car. The challenge
is, as usual, that errors accumulate over time.
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A successful controller requires the introduction of a mechanism to cor-
rect the accumulation of errors. This is closed loop control, which we
study in Lab 5B.
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4 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Do not report

Task 2 Plot of trajectory errors eq(t) [cf. (6)]

Average error ¯̄eq(t)

Task 3 Plot of trajectory errors eq(t) [cf. (8)]

Plot of an observed trajectory and the corre-
sponding model predicted trajectory

Paragraph explaining differences between ob-
served and model predicted trajectories

Task 4 Training loss and test loss

Task 5 Plot of test trajectory errors eq(t)

Plot of an observed trajectory and the corre-
sponding learned model predicted trajectory

Paragraph comparing ideal point mass model
with learned model

Task 6 Optimal loss

Task 7 Plot of L1 loss as a function of time

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 10% of your lab
grade.
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