
Lab 1A: Data, Models and Decisions

Juan Elenter, Ignacio Hounie and Alejandro Ribeiro*

August 26, 2024

1 Systems

A system is an entity that processes some inputs to produce some out-
puts. In engineering practice, inputs and outputs are often quantified and
for this reason we denote inputs with a variable x, outputs with a variable
y, and the system itself is represented by the function f (·) that codifies
the relationship y = f (x). A schema is shown in Figure 1.

This definition is vague on purpose because it is intended to maintain
generality. Pretty much any task can be codified as the action of a system.
For instance, when we hear a word and understand its meaning we are
acting as a system that takes a time varying sequence of air pressures
as inputs and produces a categorical representation as an output. When
we read a digit, we are a system that takes light patterns as inputs and
produces numbers as outputs – a number being the common property of
finite sets that can be related with a bijection. When we watch and rate a
movie, we are a system that takes movies as inputs and produces ratings
as outputs. Driving a car around a circuit requires a driver that takes
as input the desired trajectory and produces a sequence of acceleration
inputs that results in the car following the circuit. The driver is a system.

Just as important, this definition of a system is vague because we can keep
it vague and yet make it useful. Despite their significant differences all
of the systems that we describe above can be represented by the schema

*In alphabetical order.

1



Inputs ≡ x System ≡ f (·) Outputs ≡ y

Figure 1. Systems. A system f (·) is an entity that processes inputs x to produce
outputs y = f (x). This definition is vague so as to yield a wide range of specific
instances. However general, it abstracts properties that make it useful.

in Figure 1. They all process some input – audio, light, movies, or target
trajectories – to produce some output – concepts, numbers, ratings, or
acceleration sequences. They are, in fact, four systems that we will study
in this course.

2 Artificial Intelligence

A first definition of an artificial intelligence (AI) is that of a system that
mimics the input-output relationship of a natural system; see Figure 2.
When the natural system is presented with the input x it responds by
producing the output y. When the AI is presented with the same input
x it responds by producing the output ŷ. If the AI is a good AI, the
outputs it produces in response to a given input are similar to the outputs
produced by the natural system.

Having an AI is useful because it can be used in lieu of the natural system.
For instance, suppose that the input x represents an image of a digit. The
natural system is a standard human that looks at this image and reads the
number y that it represents. If the AI can successfully mimic a human by
spitting numbers ŷ that are equal to the numbers recognized by a human
reader we can use it in lieu of humans to recognize digits. This is good
because the AI frees humans from the drudgery of reading digits. AI’s
have been in use since the 1990’s to recognize digits in checks.

We must point out that the schema in Figure 2 is a flawed definition of
AI. A 100 gram tungsten ball dropped from 1 meter mimics quite well
any other tungsten ball dropped from 1 meter. Some would say that
the definition is less flawed if we add the restriction that the emulated
natural system is intelligent but this begs the question of what it means
for a natural system to be intelligent. Besides, an artificial intelligence can

2



Inputs ≡ x System ≡ f (·) Outputs ≡ y

AI ≡ Φ(·; w) Decisions ≡ ŷ

Figure 2. Artificial Intelligence. An artificial intelligence (AI) is a system that
mimics the input-output relationship of a natural system. This is a flawed defini-
tions which is nonetheless a good operational definition of the practice of AI.

still be useful if the system that it imitates is not intelligent.

Flawed or not, the most important fact is that Figure 2 is a good opera-
tional definition which captures well the current practice of AI.

2.1 Data, Models, and Decisions

To design an AI system the first step is to acquire data. This is typically
in the form of a set of N input-output pairs (xi, yi). We call this collection
of examples the training set.

The next step is the selection of a model. This is usually in the form of
a postulated relationship between inputs and outputs. This is written
in Figure 2 as the function Φ(·, w). The choice of model follows from
our knowledge and understanding of the system. For example, convo-
lutional neural networks (CNNs) have invariance and stability properties
that make them adequate to process times series and images – as we will
see in Labs 2 and 4. The choice of model also follows from accumulated
empirical evidence of which models are known to work for specific kinds
of systems.

As per Figure 2, when the AI is presented with the input x it produces
the output ŷ = Φ(x, w). This output is the AI’s estimate or prediction of
the actual output y that the system produces when presented with input
x. We also say that ŷ is the AI’s decision.

3



2.2 Machine Learning

In the AI’s decisions ŷ = Φ(x, w) the variable w is a parameter that has
to be chosen. To choose this parameter we introduce a metric ℓ(y, ŷ)
to compare predicted outputs ŷ with actual outputs y. We then search
for the parameter w that minimizes this loss over the given set of input
output pairs,

w∗ = argmin
w

1
N

N

∑
i=1

ℓ
(

yi, Φ(xi, w)
)

. (1)

We call this formulation a supervised machine learning problem (ML).
The process of finding the parameter w∗ that minimizes the loss averaged
over the available data is called training.

We call (1) a supervised learning problem because the AI is given exam-
ples of inputs xi and their corresponding outputs yi. Alternatively, we
may be given example inputs and a cost function c(·) that assesses the
merit of the AI decision Φ(xi, w). In this case we formulate the unsuper-
vised ML problem,

w∗ = argmin
w

1
N

N

∑
i=1

c
(

Φ(xi, w)
)

. (2)

We must point out that (1) and (2) are controversial definitions of learn-
ing. There is nothing in the specifications to represent understanding,
although some people argue that sufficiently complex imitation is under-
standing. As we did with the definition of AI, we remain agnostic to
this discussion. Equations (1) and (2) are good operational definitions of
learning which capture well the current practice of ML.

3 Admissions at the University of Pennsylvania

Let us pretend that we are tasked with designing a system to make ad-
mission decisions at the University of Pennsylvania (Penn). In order to
design this system we need to acquire data, choose a model, and train it
to make admission decisions.

4



ID HS GPA SAT Gender Penn GPA

A41675 3.93 1,540 F 3.67

CE58D3 3.79 1,540 M 3.53

C38C00 3.93 1,560 F 3.80

CFA232 3.90 1,570 M 3.53

B57BF6 3.95 1,500 F 3.67

CA694D 3.76 1,520 M 3.40

Figure 3. Grade point average (GPA) and Scholastic Assessment Test (SAT) data
samples.

3.1 Data

Figure 3 shows data that we have available to make admission decisions.
For a collection of former students we have access to their high school (HS)
grade point average (GPA), their Scholastic Assessment Test (SAT) scores,
their gender and their Penn GPA.

The table shows five representative examples, but we have data for a total
of 600 students. Figure 4 shows plots in which the horizontal axes are
high school GPAs or SAT scores and the vertical axes are Penn GPAs.
These plots show that high school GPA is predictive of Penn GPA. Al-
though there is significant variation we can see that higher high school
GPA corresponds with higher Penn GPA. This indicates that high school
GPAs are useful information for admission decisions as they can predict
with some accuracy the GPA that an admitted student may attain at Penn.
We can squint and see that the same is more or less true of SAT scores,
although the correlation between SAT scores and Penn GPA is weaker.

Task 1 Follow this link to download the GPA and SAT score data. Repro-
duce the plots in Figure 4. ■

5

https://dsd.seas.upenn.edu/wp-content/uploads/2024/01/Penn-GPA-and-HS-Data.csv


3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1
High-School GPA

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1

Pe
nn

 G
PA

1400 1450 1500 1550 1600
SAT score

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1

Pe
nn

 G
PA

Figure 4. Penn GPA plotted with respect to high school GPA and SAT scores.

3.2 System

To make admission decisions we interpret Penn as the system shown in
Figure 5. This system takes as inputs high school GPA, SAT scores and
gender information of a student and produces as an output the Penn GPA
of the corresponding graduate. If we define the input data as a vector
x = [HS GPA; SAT; Gender] and we denote the output as y = Penn GPA
we can represent this system as the function,

Penn GPA = y = P(x) = P

 HS GPA
SAT
Gender

 . (3)

Notice that this is a poor representation of Penn. Incoming students are
much more than their gender, High School GPA, and SAT scores. Penn
graduates are much more than their Penn GPAs and the institution itself
does much more to a high school graduate than transforming their High
School GPA and SAT scores into a Penn GPA. This is just one aspect of
the whole system on which we are choosing to focus. The distinction
between what a system is and what an engineer chooses to say that a
system is warrants some discussion that we undertake in Section 5.

4 Model and Decisions

To make admission decisions we leverage the system of Section 3.2 and
the data of Section 3.1 to design an AI model that predicts the Penn GPA

6



x =


HS GPA

SAT

Gender

 P(·) y = Penn GPA

Figure 5. The University of Pennsylvania.

of prospective students.

To make matters simpler let us begin by ignoring SAT scores and gender
and attempt predictions based on high school GPAs. This means that the
system in (4) is replaced by the system

Penn GPA = y = P(x) = P(HS GPA ). (4)

The function P(x) is the true effect of Penn on scholastic accomplishment.
This is information that becomes available after the fact. When a student
graduates Penn, we have access to their high school GPA x and their Penn
GPA y.

Penn GPA predictions are to be made prior the fact. Before a student
attends Penn we want to estimate their Penn GPA based on their high
school GPA x. We choose to postulate a linear relationship and make
predictions of the form

ŷ = αx. (5)

In (5), ŷ is a prediction of the true Penn GPA y that will be available after
the fact. The coefficient α is to be determined with the goal of making
predictions ŷ close to to actual Penn GPA y. We can then use Penn GPA
predictions to make admission decisions.

4.1 Least Squares Estimation

To determine a proper value for the coefficient α in (5) we utilize the data
we have available on the scholastic performance of past students. Use N
to denote the total number of available data points. Introduce a subindex
i to differentiate past students so that the pair (xi, yi) denotes the high
school GPA and Penn GPA of student i. For these students we can make
GPA predictions ŷi = αxi. For a given coefficient α we define the mean

7



3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1
High-School GPA

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
4.0
4.1

Pe
nn

 G
PA

Figure 6. Linear minimum mean squared error (MMSE) prediction of Penn GPA
from high school GPA.

squared error (MSE),

MSE(α) =
1
N

N

∑
i=1

(
yi − ŷi

)2
=

1
N

N

∑
i=1

(
yi − αxi

)2
. (6)

The mean squared error MSE(α) measures the predictive power of coeffi-
cient α. The quantity (yi − ŷi)

2 is always nonnegative and indicates how
good the predicted GPA ŷi is to the true GPA yi. The MSE averages this
metric over all students. It follows that a natural choice for α is the value
that makes the MSE smallest. We therefore define the optimal coefficient

α∗ = argmin
α

1
2

MSE(α) = argmin
α

1
2N

N

∑
i=1

(
yi − αxi

)2
, (7)

and proceed to make Penn GPA predictions as ŷ = α∗x [cf. (5)]. This GPA
predictor is called the linear minimum mean squared error (MMSE) pre-
diction. This is because the predictor is the linear function that minimizes
the MSE.

Task 2 Prove that the MMSE estimator coefficient α∗ defined in (7) is
given by the expression

α∗ =
N

∑
i=1

xiyi

/ N

∑
i=1

x2
i . (8)

8



Compute α∗ for the data loaded in Task 1. Plot the Penn GPA with respect
to HS GPA and superimpose the prediction line ŷ = α∗x. This plot is
shown in Figure 6.

In Task 2 we make predictions of the Penn GPA of students that have
graduated Penn. Predicting Penn GPAs of past students is unnecessary
given that we already know their true GPAs. Our motivation for solving
this unnecessary problem is to determine the coefficient α∗ that we can
use to make predictions ŷ = α∗x of students that have not yet attended
Penn – for which x is available but y is not. The effectiveness of this pre-
diction depends on the extent to which the past is a good representation
of the future.

It is germane to emphasize that in Task 2 we are using something we
know – the GPA of former students – to answer a new question – the GPA
of a prospective student. However primitive, this is a form of intelligence.

4.2 Root Mean Squared Error

We evaluate the merit of α∗ with the root mean squared error (RMSE)

MSE(α) =
√

MSE(α) =

[
1
N

N

∑
i=1

(
yi − αxi

)2
]1/2

. (9)

The reason we use the RMSE to evaluate the merit of α∗ instead of the
MSE is that the RMSE has the same units. It is easier to interpret than the
MSE. Since the difference between the two is just a square root function,
the coefficient α∗ that minimizes the MSE also minimizes the RMSE.

Task 3 Compute the RMSE of α∗ and comment on the quality of the Penn
GPA predictions. ■

You should observe that the RMSE is 0.094. We can think of this number
as the accuracy of our Penn GPA predictions. This number seems to imply
that our Penn GPA predictions are quite accurate because Penn GPAs can
range from 0 to 4. However, the actual range of Penn GPAs observed in
the dataset is between 3.3 and 4.0. In a variable whose range spans 0.7

9



x = HS GPA P(·) y = Penn GPA

y = α∗x ŷ = Penn GPA Prediction

Figure 7. Penn grade point average prediction. We design an artificial intelligence
that predicts Penn GPAs based on high school GPA and SAT scores. The AI
mimics the same relationship observed in past students.

units, a prediction error of 0.094 is not very accurate. This is apparent in
Figure 6 where the line of predicted Penn GPAs is a rough estimate of
observed Penn GPAs.

4.3 Linear Regression

We consider now a more complete system in which the Penn GPA is
deemed to depend on the high school GPA and the SAT score. We there-
fore define the input vector x = [x1; x2] = [HS GPA; SAT] which stacks
the High School GPA and the SAT score of a particular student. The
system of interest is therefore of the form,

Penn GPA = y = P(x) = P
[

x1
x2

]
= P

[
HS GPA
SAT

]
. (10)

To make Penn GPA predictions we postulate a linear model. That is, we
define a vector of coefficients w = [w1; w2] and postulate that Penn GPAs
adhere to the relationship

ŷ = w1x1 + w2x2 := wTx. (11)

In the second equality in (11) we use the definition of the inner product
between the coefficient vector wT and the data vector x.

As is the case of (5), ŷ in (11) is a prediction of the true Penn GPA y that will
be available after the fact. The coefficient w = [w1; w2] is to be determined
with the goal of making predictions ŷ close to to actual Penn GPA y. We

10



do that by considering the MSE associated with the students available in
our dataset. For each of these students the vector xi = [xi1; xi2] stacks the
corresponding High School GPA xi1 and SAT score xi2. We can therefore
write the MSE associated with coefficient w as

MSE(w) =
1
N

N

∑
i=1

(
yi − ŷi

)2
=

1
N

N

∑
i=1

(
yi − wTxi

)2
. (12)

Task 4 Define and compute the MMSE estimator coefficients w∗, that
would extend the MMSE definition in (7). Show that this coefficient is
given by the expression

w∗ =

[
N

∑
i=1

xixT
i

]−1 N

∑
i=1

xiyi. (13)

Compute w∗ for the data loaded in Task 1. Compute the RMSE of w∗ and
comment on the quality of the Penn GPA predictions. ■

5 Requirements

The AI of Section 4 is an indefensible strategy for making admission de-
cisions to Penn. To talk about why this strategy is indefensible we need
to talk about requirements. This is just a way of saying what is the goal
of the AI system that we are designing. As it happens, we never made
this goal explicit. However, implicit in the prediction of Penn GPAs is the
fact that we intend to admit students with higher GPA potential. Thus,
the specification (the requirement) of the AI system is the following:

(R1) Admit the students that will attain the highest graduation GPA.

Making requirements explicit is important. If the AI makes decisions that
are incompatible with our principles, it is not the model’s fault, the data’s
fault, or the training process’s fault. It is a problem of having misspecified
requirements.

11



x ≡ Alejandro Penn(·) ≡ University of Pennsylvania y ≡ Alejandro Libre

Figure 8. The University of Pennsylvania (Penn). Penn is a system that takes a
student as an input and produces a graduate as an output.

5.1 User Requirements

Requirement (R1) is a choice we made as engineers. This is not the same
as the user requirement. The specification that people actually in charge
of admission decisions would give.

This requirement is actually well known. Penn is a liberal arts institution.
As such, our goal is to make students free. This is the literal meaning
of liberal arts; the skill (art) of being free (liberal). Penn being Penn,
the meaning of free is more concrete and was given to us by Benjamin
Franklin1:

“The Idea of what is true Merit, should also be often presented to
Youth ..., as consisting in an Inclination join’d with an Ability to serve
Mankind, one’s Country, Friends and Family; which Ability is (with
the Blessing of God) to be acquir’d or greatly encreas’d by true Learn-
ing.” [Emphasis mine]

Learn, so that you can develop the inclination and the ability to serve.

I did not attend Penn, but had I attended Penn, I expect the outcome
would had been something like what is depicted in Figure 8. The stu-
dent Alejandro would be transformed into the graduate Alejandro. The
latter is more libre. More inclined and more able to serve mankind, his
countries, his friends and his family. He would be happier for that.

Having this in mind, the following is a sensible requirement for the ad-
mission system:

1Benjamin Franklin, “Proposals Relating to the Education of Youth in Pennsylvania.”
October 1749.

12



(R2) Admit the students that we can make the most free. Those that
after attending Penn will be the most inclined and the most able to
serve mankind and their countries, friends and families.

If you ever wondered why university admissions are so fraught, this is the
reason. Penn does try to live up to its charter. We do believe in education
as a service to our communities and we want to admit and teach students
that can have the most positive impact in their communities.

This parenthetical comment aside, what is relevant here is the contrast
between (R2) and (R1). Two remarks are warranted in this regard: (i)
There is a lot of distance between the user requirement (R2) and the engi-
neering requirement (R1). (ii) Requirement (R1) is partly motivated by the
data that we have available. Indeed, Requirement (R1) reduces the beau-
tiful complexity of an institution of higher education to a map between
performance indicators. These performance indicators are reducing the
beautiful complexity of students and graduates to numbers and genders,
both of which don’t say much about their inclination and ability to serve
mankind and their countries, friends and families. This coarse simpli-
fication of Penn is necessary, however, because the data that we have is
limited.

Throughout, we will talk a lot about data, models and decisions but we
won’t talk much about requirements. This is because the focus of this
course is on designing systems that satisfy given requirements. In actual
engineering practice, requirements are flexible and it is important to think
about how design considerations affect system requirements.

13



6 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Plot of Penn GPA vs HS GPA

Task 1 Plot of Penn GPA vs SAT

Task 2 Derivation of (8)

Task 2 Value of α∗

Task 3 RMSE

Task 3 Comment on the quality of the Penn GPA
predictions

Task 4 Derivation of (13)

Task 4 Value of w∗

Task 4 RMS

Task 4 Comment on the quality of the Penn GPA
predictions

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 4 points of your
lab grade.

14



A Data Tensors

In Section 4.1 the variables xi and yi are numbers (scalars) that denote
High School and Penn GPAs of individual students. In Section 4.3 we
redefine xi = [x1; xi2] as a vector that stacks High School GPA and SAT
scores of Student i. The data of all N students can then be arranged
into either vectors (Section A.1) or matrices (Section A.2). In subsequent
labs we will arrange data into multidimensional prisms. We call these
arrangements data tensors.

A.1 Data Vectors

We arrange High School and Penn GPA data of all students into vectors.
We do that by stacking GPAs of different students on top of each other.
Thus, we define vectors of High School and Penn GPAs as stacks of the
form,

X =


x1
x2
...
xN

 , Y =


y1
y2
...
yN

 . (14)

In this equation we use uppercase in the definitions of the data vectors
X and Y to signify that they contain all of the entries in the dataset. The
i-th row of these vectors Xi = xi and Yi = yi contain the High School and
Penn GPA of Student i.

A useful operation to perform on vectors is a transposition. This is just
a rearrangement of the data so that instead of having different students
stacked on top of each other, we have data for different students appear-
ing right next to each other. Formally, the transposes XT and YT of X and
Y are defined as

XT =
[

x1, x2, . . . , xN
]

, YT =
[

y1, y2, . . . , yN
]

. (15)

In these vectors, the i-th column contains the information of Student i.
This is because different columns ox X and Y have become different rows
of XT and YT . To differentiate these two different ways of arranging
information, we say that X and Y are column vectors and that XT and YT

are row vectors.

15



This notation is convenient because we can use vector operations to write
the expressions in (8) in a more compact manner. Indeed, the definition of
the inner product XTY between vectors XT and Y is

XTY =
[

x1, x2, . . . , xN
]
×


y1
y2
...
yN

 :=
N

∑
i=1

XiYi =
N

∑
i=1

xiyi. (16)

It follows from the same definition that the inner product of the data
vector X with itself is

XTX =
[

x1, x2, . . . , xN
]
×


x1
x2
...
xN

 =
N

∑
i=1

X2
i =

N

∑
i=1

x2
i . (17)

This is sometimes called the energy of vector X.

Comparing the expression of the MMSE estimator in (8) with the defini-
tions of inner product and energy in (16) and (17) we conclude that the
MMSE estimator can be equivalently written as

α∗ = XTY
/

XTX. (18)

Observe that (8) may look like an interesting derivation but it is in fact
just a consequence of proper definitions. The inner produs is defined the
way it is defined in (16) to be able to rewrite (8) as in (18)

A.2 Data Matrices

In the same way in which we arranged data intro matrices in Section A.1,
we can rearrange High School GPA and SAT scores into a data matrix.
This is defined as a stack of the form,

X =


x11 x12
x21 x22
...

...
xN1 xN2

 =


xT

1
xT

2
...
xT

N

 . (19)

16



In this matrix each row represents a different student and each column
represents a different data type. Column 1 contains High School GPA
data. Column 2 contains SAT scores.

As we do with vectors we can transpose matrices. This is just a rear-
rangement in which rows become columns and columns become rows.
We therefore have that the transpose of X is

XT =

[
x11 x21 . . . xN1
x12 x22 . . . xN2

]
=

[
x1 x2 . . . xN

]
. (20)

This notation is convenient because we use matrix operations to rewrite
the linear MMSE estimator in (13) in a more compact notation. To do that
we recall (or learn) the definition of the product between the data matrix
XT and the data vector Y. This is given by,

XTY =
[

x1 x2 . . . xN
]
×


y1
y2
...
yN

 :=
N

∑
i=1

xiyi (21)

Observe that this equation looks the same as equation (16) but they are
actually slightly different. In (21) the symbol xi represents the vector
xi = [xi1, xi2] whereas in (16) the symbol xi is just a (scalar) number. The
result of the operation in (16) is a number. The result of the operation in
(21) is a vector.

Likewise, using the same definition of matrix product we can see that the
product between the data matrices XT and X is given by

XTX =
[

x1 x2 . . . xN
]
×


xT

1
xT

2
...
xT

N

 :=
N

∑
i=1

xixT
i (22)

Again, this equation looks similar to (17) but it is different. In (17) we have
products xixi = x2

i between scalars. In (22) we have products between
vectors xi and xT

i . The results of this operation is a matrix with four
entries,

xixT
i =

[
xi1 xi2

]
×

[
xi1 xi2

]
:=

[
xi1xi1 xi1xi2
xi2xi1 xi2xi1

]
(23)

17



Comparing the expression of the MMSE estimator in (18) with the data
matrix products in (21) and (22) we see that the MMSE estimator can be
equivalently written as

w∗ =

[
XTX

]−1

XTY. (24)

This may look like an interesting derivation but it is in fact just a con-
sequence of proper definitions. The matrix products in (21) and (22) are
defined the way they are defined to be able to rewrite (18) as in (24).

B Vectors and Matrices

Almost all of the models that are used in the current practice of AI are
either linear or minor variations of linear models. This is the reason why
the definition of the matrix product in (21) is important to us. We there-
fore summarize it here.

A vector x is an arrangement of n numbers stacked on top of each other
and the transpose of this vector is the same arrangement with the num-
bers arranged side by side,

x =


x1
x2

...
xn

 , xT =
[

x1 x2 · · · xn
]

. (25)

When we want to emphasize the difference between x and xT we say that
x is a column vector and that xT is a row vector.

A matrix A is an arrangement of numbers with m rows and n columns,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
...

am1 am2 . . . amn

 . (26)

Observe that we can always think of a matrix as an arrangement of n
column vectors side by side or as a stack of row vectors. Indeed convening

18



that a:j is a column vector stacking all of the rows of Column j and that
aT

i: is a row vector with all of the columns of Row i written side by side
we can rewrite (26) as,

A =
[

a:1 a:2 · · · a:n
]

=


aT

1:
aT

2:
...

aT
m:

 . (27)

Writing matrices as collections of vectors is fundamental. Professionals
think more often about (27) than they do about (26). In particular, this is
true when defining products as we show next.

B.1 Vector and Matrix Products

Given two column vectors x and y their inner product is a scalar number
given by

xTy =
[

x1 x2 . . . xn
]
×


y1
y2
...
yn

 :=
n

∑
i=1

xiyi. (28)

In this definition it is required that the vectors x and y be of the same
dimension. They both need to have the same number of entries. The
inner product is a measure of similarity between vectors x and y. When
its value is large and positive it indicates that the vectors are similar, i.e.,
that x ≈ y. When its value is large and negative it indicates that the
vectors are anti-similar, i.e., that x ≈ −y. When its value is close to zero
it means that the vectors are not much related to each other.

To define the product of a matrix A with a vector x we write the matrix A
as a stack of row vectors aT

i: . We then define the product between A and
x as the corresponding stack of inner products between aT

i: and x,

y = Ax =


aT

1:
aT

2:
...

aT
m:

 × x :=


aT

1:x
aT

2:x
...

aT
m:x

 . (29)

19



In this definition the row vectors aT
i: and the column vector x must have

the same number of entries. This implies that the number of columns of
the matrix A and the number of rows of the vector x are the same. The
output of the product is a vector in which the number of entries equals
the number of rows of the matrix A. In (29) the vector x has n entries and
the matrix A has m rows and n columns. The product y = Ax is vector
with m entries.

From the definitions in (28) and (29) we see that the ith entry of y is

yi = aT
i: x =

n

∑
j=1

aijxj. (30)

This expression is an equivalent definition of the product y = Ax. I.e.,
the product y = Ax is a vector whose entries are given by (30).

To define the product of a two matrices A and B we write the matrix
A as a stack of row vectors aT

i: and the matrix B as a concatenation of
column vectors b:,j. We then define the product between A and B as the
corresponding arrangement of inner products between aT

i: and b:,j,

C = A × B

=


aT

1:
aT

2:
...

aT
m:

×
[

b:1 b:2 · · · b:n
]

:=


aT

1:b:1 aT
1:b:2 . . . aT

1:b:n
aT

2:b:1 aT
2:b:2 . . . aT

2:b:n
...

...
...

...
aT

m:b:1 aT
m:b:2 . . . aT

m:b:n

 .

(31)

In this definition each of the rows of the matrix C contains inner products
with the same row vector of A and each of the columns contains inner
products with the same column vector of B.

From the definitions in (28) and (31) we see that the ijth entry of C is

cij = aT
i: b:,j =

n

∑
k=1

aikbkj. (32)

This expression is an equivalent definition of the product C = AB. I.e.,
the product C = AB is a vector whose entries are given by (32).

Either of the equivalent definitions in (31) and (32) assume that the num-
ber of columns of the matrix A and the number of rows of the matrix B

20



are the same. The output of the product is a matrix in which the number
of rows equals the number of rows of the matrix A and the number of
columns equals the number of columns of B. In (32) the matrix A has m
rows and the matrix B has n columns. The matrix C has m rows and n
columns. The number of columns of A and the number of rows of B must
be the same, say, a number p.

B.2 Tensors

A scalar is a 0-dimensional arrangement of numbers. A vector is a 1-
dimensional arrangement of numbers. A matrix is a 2-dimensional ar-
rangement of numbers. We can define arrangements of arbitrary dimen-
sion that we call tensors. For instance a three dimensional tensor A is an
arrangement of m × n × p scalars aijk.

Slicing a tensor produces a tensor of smaller dimensionality. Of particular
note, slicing a tensor of dimension 3 produces a matrix. We use the nota-
tion A(:, :, k) to signify a 2-dimensional slice along the third coordinate of
the tensor A. This slice is the matrix

A(:, :, k) =


a11k a12k . . . a1nk
a21k a22k . . . a2nk

...
...

...
...

am1k am2k . . . amnk

 . (33)

Likewise, we use the notations A(i, :, :) and A(:,j,:) to denote slices along
the first and second coordinate, respectively. This is not unlike the defini-
tions in (27). We are just rewriting subindexes as arguments and consid-
ering arrangements of larger dimension.

We can also consider slices along more than one coordinate. For instance,
slicing the three dimensional tensor along the last two coordinates pro-
duces the vector

A(:, j, k) =


a1jk
a2jk

...
amjk

 . (34)

Tensors are convenient ways of arranging data and parameters in AI mod-
els. We will use sliced tensors often in our computations. When doing

21



so we need to pay attention to how slicing produces matrices and vectors
representing the right operation. This may get cumbersome but it is not
difficult.

22


	Systems
	Artificial Intelligence
	Data, Models, and Decisions
	Machine Learning

	Admissions at the University of Pennsylvania
	Data
	System

	Model and Decisions
	Least Squares Estimation
	Root Mean Squared Error
	Linear Regression

	Requirements
	User Requirements

	Report
	Data Tensors
	Data Vectors
	Data Matrices

	Vectors and Matrices
	Vector and Matrix Products
	Tensors


