
Lab 1C: Neural Networks

Ignacio Hounie, Javier Porras and Alejandro Ribeiro*

September 2, 2024

1 Neural Networks

Neural Networks are information processing architectures made up of a
composition of layers, each of which is itself the composition of a linear
transformation with a pointwise nonlinearity.

For a network with an arbitrary number of layers L we define the input
output relationship through the recursion

x0 = x, xℓ = σ
(

zℓ
)
= σ

(
Aℓxℓ−1

)
, xL = Φ(x;A). (1)

In this recursion the output of Layer ℓ− 1 produces the output of Layer
ℓ as xℓ = σ(Aℓxℓ−1). This operation is a composition of the linear map
Aℓxℓ−1 with a pointwise nonlinear function σ. This is a function that acts
separately on each individual components; see Section 1.1. To complete
the recursion we redefine the input x as the output of Layer 0, x0 = x. The
output of the neural network is the output of layer L, xL = Φ(x;A). In
this notation A is the tensor A := [A1, . . . , AL] that groups the L matrices
that are used at each of the L layers.

A neural network with three layers is depicted in Figure 1. The input
to the neural network is a vector, or signal, x which we will also denote
as x0 = x. This signal is passed to the first layer of the neural network
where it is processed with a linear transformation defined by the matrix

*In alphabetical order.

1



Layer 1

Layer 2

Layer 3

x0 = x

z1 = A1 x0 x1 = σ
(

z1

)z1

z2 = A2 x1 x2 = σ
(

z2

)z2

z3 = A3 x2 x3 = σ
(

z3

)z3

x1

x1

x2

x2

x3 = Φ(x;A)

Figure 1. A neural network with three layers. The neural network is a composition
of layers, each of which is itself the composition of a linear transformation with a
pointwise nonlinearity. The output of the neural network depends on the tensor
A := [A1, A2, A3]. This is the parameter that we determine during training.

A1. This produces the intermediate signal z1 = A1x which is then passed
through a pointwise nonlinearity σ to produce the first layer output

x1 = σ
(

z1

)
= σ

(
A1x0

)
. (2)

The output x1 of Layer 1 becomes an input to Layer 2. In this layer, the
signal is processed by a linear transformation defined by the matrix A2
and a pointwise nonlinearity to produce the Layer 2 output

x2 = σ
(

z2

)
= σ

(
A2x1

)
. (3)

This output becomes now an input to the third layer where an analogous
composition of a linear map with a pointwise nonlinearity produces the
output of the neural network:

Φ(x;A) = x3 = σ
(

z3

)
= σ

(
A3x2

)
. (4)

2



In (4) we use Φ(x;A) to denote the neural network output. This output
is a function of the input x and a function of the matrices A1, A2, and A3.
These three matrices are grouped in the tensor A := [A1, A2, A3]. This is
the parameter that we must determine during training.

This training process entails solutions of an empirical risk minimization
problem (ERM). For clarity, recall that we are given data pairs (xi, yi)
in which xi is the input to a system of interest and yi is the respective
observed output. In the ERM problem we evaluate the neural network
outputs ŷi := Φ(xi;A) and compare them with the corresponding system
outputs yi using a given loss functions ℓ(y, ŷ). The ERM objective is
the average of these individual losses. Thus, training a neural network
implies finding the tensor A∗ that solves the ERM problem,

A∗ = argmin
A

1
N

N

∑
i=1

ℓ
(

yi, Φ(xi;A)
)

(5)

Notice that in (5) we must have that the dimensions of the system outputs
yi and the dimensions of the neural network outputs ŷi := Φ(xi;A) must
be the same. See Section 1.2 for details on the specification of the search
space of (5)

The historical development of neural networks drew inspiration from
early models of biological neurons. Given our current understanding
of biological neurons and their interactions it is untenable to say that the
architecture in Figure 1 mimics biological brains.

A better motivation is that neural networks are nonlinear maps that retain
some of the advantages of linear maps. This is because nonlinearities are
restricted to act on linear combinations of individual components. For
example, if x0p and x0q are components of the input vector x0 = x, the
nonlinear operation σ(x0p + x0q) may happen in Layer 1. However, the
nonlinear operation x0px0q cannot happen.

1.1 Pointwise nonlinearities

That the nonlinear function σ in (1) is pointwise means that it acts on
each component of the input separately. This means that if we write the
intermediate signal as zℓ = [zℓ1; zℓ2; . . . ; zℓp], the nonlinearity σ produces

3



Rectified linear unit (ReLU) Leaky ReLU

Sigmoid Hyperbolic Tangent

Figure 2. Activation functions.

as an output the vector

σ
(

zℓ
)
= σ

(
[zℓ1; zℓ2; . . . ; zℓp]

)
=

[
σ(zℓ1); σ(zℓ2); . . . ; σ(zℓp)

]
. (6)

The most popular choice for a pointwise nonlinearity is a rectified linear
unit (ReLU). A ReLU is a simple function that just zeros the entry when
it is negative (see Figure 2),

σ(z) = max(0, z). (7)

In this expression we can think that the output σ(z) is activated when z ≥
0 and not activated when z < 0. For this reason pointwise nonlinearities
are also called activation functions, whether we use a ReLU or not.

A variation of a ReLU nonlinearity is a leaky ReLU. Given a constant
0 < α < 1, a leaky ReLU is defined as

σ(z) = max(αz, z). (8)

4



Given that 0 < α < 1 the output of the leaky ReLU is σ(z) = z when
z ≥ 0 and σ(z) = αz when z < 0. The idea is to use a constant α ≪ 1
so that negative outputs are attenuated significantly. The advantage of a
leaky ReLU is that it does not eliminate negative outputs entirely. This is
particularly useful during training.

Another common choice of activation function is the logistic or sigmoid

σ(z) =
1

1 + e−z . (9)

This function approaches 0 when z is a large negative number and ap-
proaches 1 when z is a large positive number. When z has a small abso-
lute value the sigmoid is approximately linear. Sigmoids are useful when
we want outputs that range between 0 and 1.

The final activation function we define is the hyperbolic function

σ(z) =
ez − e−z

ez + e−z . (10)

This function is similar in shape to the sigmoid except that its range is
between plus and minus 1. An interesting interpretation of the hyperbolic
function is that it tapers large values. When the argument z has small
absolute value the output of a hyperbolic function is close to its input,
σ(z) ≈ z. When the argument z is large, the output is saturated to plus
or minus 1.

Notice that the ReLU and leaky ReLU functions in (7) and (8) are not
differentiable at z = 0 whereas the sigmoid and hyperbolic tangent in (9)
and (10) are differentiable everywhere. This is an important distinction
but it has little practical significance.

Further observe that all these four activation functions are such that the
values at the output have less variability than the values at the input.
ReLUs and leaky ReLUs maintain positive values but eliminate or dras-
tically reduce negative values. Sigmoids and hyperbolic tangents squash
the range of the input to (0, 1) or (−1, 1). Reducing variability improves
the stability of information processing with neural networks relative to
information processing with linear functions.

5



1.2 Neural network specification

The input to each layer of a neural network is a vector and the output
is another vector. We say that we specify a neural network when we
specify the number of entries of each of these vectors. Thus, if p0 = p
is the number of components of the input x0 and pℓ is the number of
components at the output xℓ of layer ℓ of a neural network with L layers,
the neural network is specified by the numbers L and p0, p1, . . . , pL. Of
these numbers p0 and pL are determined by the data because p0 is the
dimension of the input x and pL matches the dimension of the output y.

To complete the specification of a neural network we must also specify
the nonlinearities that are used at each layer. In most cases, the same
activation function is used in all layers.

Task 1 Define an object to represent a neural network to process scholas-
tic achievement data. The inputs are high school GPA and SAT scores.
The output is an estimate of the Penn GPA. This neural network has 2
layers and the output of Layer 1 has dimension p1 = 20. The neural
network uses ReLU nonlinearities in both layers.

Endow this neural network object with a method that takes as input the
vector x = [HS GPA; SAT] with high school GPA and SAT scores and
produces estimates of Penn GPAs. ■

Notice that while we say that we are specifying the neural network we
are, in reality, specifying a family or a class of neural networks. An actual
neural network is a conrete choice of the tensor A := [A1, . . . , AL]. The
intent of a neural network specification like the one we give in Task 1 is
to specify the search space for the ERM problem in (5).

1.3 Neurons and Weights

It is common practice to describe neural networks in terms of neurons
and weights instead of input vectors and linear maps as we do in Figure
1. In this alternative nomenclature the components of the output of each
layer are called neurons and the entries of the matrices that define the

6



x01

x02

x11

x12

x13

x21

x22

x23

x31

(A1)21

(A1)22

(A2)21

(A2)22

(A2)23

(A3)11

(A3)12

(A3)13

σ(A1x0) σ(A2x1) σ(A3x2)
x0 = x x1 x2 x3 = Φ(x,A)

Figure 3. A neural network with three layers. Neural networks are often repre-
sented as collections of neurons and weights. Neurons represent the input and
output vectors of each layer and weights represent the entries of the matrices that
are contained wihtin each layer.

input-output relationship of each layer are called weights. A scheme is
given in Figure 3.

At Layer ℓ the components of the Layer output xℓ are the layer’s neurons.
If this vector is of dimension pℓ we say that the layer contains pℓ neurons.
This language is extended to the input vector, whose entries are termed
input neurons. In Figure 3 we have 2 input neurons, 3 neurons in Layers
1 and 2, and 1 neuron in Layer 3. Since Layer 3 is the output of the
neural network we equivalently say that we have 1 output neuron. The
neurons that are neither input nor output neurons are sometimes called
intermediate neurons or hidden neurons.

In Task 2, the neural network has two layers. Layer 1 has p1 = 20 neurons
and Layer 2 has p2 = 1 neuron. The latter is because the outputs we
are trying to predict are scalar numbers. The input dimension is p0 = 2.
We therefore say that this neural network has 2 input neurons, 1 output
neuron, and 20 hidden neurons in a single layer.

As it follows from (1), the input-output relationship of Layer ℓ is deter-

7



mined by the matrix Aℓ. This matrix must have ℓ− 1 columns and ℓ rows
because it processes the vector xℓ−1 – which has ℓ− 1 neurons – to pro-
duce the vector xℓ – which has ℓ neurons. The entries of matrix Aℓ are
called weights and we say that entry (Aℓ)pq is the weight that connects
neuron q at the input of Layer ℓ with neuron p at the output of Layer ℓ.

2 Train and Test Sets

The minimization of empirical risks carries a subtle challenge. To see
which one, consider an ERM problem in which we do not choose a pa-
rameterization. In this case we are simply seeking an artificial intelligence
Φ(x) that solves the following problem

Φ∗ = argmin
Φ

1
N

N

∑
i=1

ℓ
(

yi, Φ(xi)
)

. (11)

This problem is the opposite of challenging. We just choose the map
Φ(xi) = yi and select Φ(x) at random for any other x. This solution is
as easy as it is nonsensical. It does not solve the artificial intelligence
problem of finding a function Φ(x) that can make predictions about the
future. It memorizes the past perfectly but it says nothing about future
inputs that are not exact matches of some past inputs.

Given that it is nonsensical there is no point in working with (11). And,
indeed, we are not attempting to solve (11). We are attempting to solve
the ERM problem in (5) in which predictions ŷ = Φ(xi;A) are outputs of
a family of neural networks that follow some specification – as discussed
in Section 1.2. Nevertheless, there is the mystifying fact that from the
perspective of empirical risk a function Φ∗ that solves (11) is at least as
good, and in all likelihood better, than a function Φ(xi;A∗) that solves
(5). Indeed, since the empirical risk of Φ∗ is null and the empirical risk is
nonnegative, we must have,

0 =
1
N

N

∑
i=1

ℓ
(

yi, Φ∗(xi)
)

≤ 1
N

N

∑
i=1

ℓ
(

yi, Φ(xi;A∗)
)

. (12)

The answer to this riddle is that the merit of an artificial intelligence is
not its empirical risk but the risk it attains during operation.

8



Suppose then that we observe Ñ points (x̃j, ỹj) during operation of the
neural network. The true metric of performance of the neural network
is its ability to make predictions Φ(x̃j;A) that are close to observed out-
comes. This is measured but the operational risk

r̃(A) =
1
Ñ

Ñ

∑
j=1

ℓ
(

ỹj, Φ(x̃j;A)
)

. (13)

This solves the riddle of (12) because it is possible that the operational risk
of the neural network is better than the operational risk of the function
Φ∗. This is not just possible but does happen in practice. The reasons
why this may happen or not are the subject matter of statistical learning
theory. We will not study this here.

Observe that the operational risk becomes available a posteriori; after the
neural network goes into service and starts making predictions. To gain
a handle on operational risk before service we divide available data into
two sets. A training set with the N samples (xi, yi) that we use for solving
(5) and a test set with Ñ samples (x̃i, ỹi) that we can use to estimate the
operational risk. It is important that the test set is not used in training and
it is important that the test set is representative of the data as a whole. In
this context the operational risk is also called to test error.

Task 2 Divide the data of Lab 1A into a test set with Ñ = 100 samples
and use the remaining samples as a training set. Use it to train the neural
network of Task 1. Use a stepsize of 0.01, a batch size of 64 and train for
200 epochs. Evaluate the training error and the test error. They will be
different. Comment. ■

Task 3 We will incorporate the gender data that we have so far ignored.
To that end encode gender as Female = 1 and Male = −1. Redefine the
object in Task 3 so that it can now process this information. In this neural
network we use a single intermediate layer with 20 hidden neurons. ■

Task 4 Divide the data of Lab 1A into a test set with Ñ = 100 samples
and use the remaining samples as a training set. Use it to train the neural
network of Task 3. Use a step size of 0.01, a batch size of 64 and train for
200 epochs. Evaluate the training error and the test error.

9



0 25 50 75 100 125 150 175 200
Epoch

0.80

0.85

0.90

0.95

1.00

1.05
M

SE

Mean squared error evolution
train
test

Figure 4. MSE of Neural Network predictions for the training testing sets as a
function of the training epoch.

0 25 50 75 100 125 150 175 200
Epoch

0.80

0.85

0.90

0.95

1.00

1.05

1.10

M
SE

Mean squared error evolution
train
test

Figure 5. Neural network using Gender Data. MSE of Neural Network predic-
tions for the training testing sets as a function of the training epoch.

10



Epoch 1

Epoch 2

Epoch 3

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5

Figure 6. Sampling without Replacement. The training set is divided into N/B
batches of size B containing different samples. This tends to be less erratic than
the random sampling assumed in (14) because all samples are used during train-
ing and no sample is used more than once. If we need to run more than N/B
iterations we run several epochs in which the training set is sampled in the same
way. Samples are reshuffled from epoch to epoch.

Task 5 Given that we have decided to use gender information in our de-
cisions, it is fair that we are asked what effect this choice has. Evaluate
the average predicted GPA for Female and Male applicants and observe
that data can be perilous. Or not. Comment. ■

3 Sampling Without Replacement

In Tasks 2 and 4 we trained our neural networks using the stochastic gra-
dient descent (SGD) algorithm we introduced in Lab 1B. As a reminder,
this algorithm utilizes the stochastic gradients,

ĝ(w) =
1
B

B

∑
i=1

∂

∂w
ℓ
(

yi, Φ(xi; w)
)

, (14)

which are averages of gradients associated with individual data pairs over
a batch of B ≪ N samples. These stochastic gradients form the basis of
the SGD recursion,

w(k + 1) = w(k)− ϵĝ(w(k)), (15)

In (14), the samples in the batch are chosen independently at random
at each SGD iteration. While this is justifiable in theory it tends to per-
form erratically in practice because there is a significant variability in the
samples that are drawn in different runs. Indeed, there is a significant
likelihood that some samples are never chosen in any batch and a signif-
icant likelihood that some samples are drawn in several batches.

11



We overcome this erratic behavior by dividing the training set into N/B
batches of size B containing different samples. We call this choice of
batches sampling without replacement. This nomenclature indicates that
samples in different batches are different and that all samples are part of
one batch.

This process is sketched in Figure 6. The training set in the illustration
contains N = 30 samples that we divide into N/B = 5 batches of B = 6
samples each. If we need to run more than N/B = 5 stochastic gradient
descent iterations we repeat the process of dividing the training set into
batches. To avoid having batches with the exact same set of samples, the
training set is reshuffled before it is divided into batches. Each of the new
set of batches that are created after reshuffling is called an epoch.

Task 6 Reimplement Task 2 using sampling without replacement. This is
a task that is easier to implement using functionalities built in Pytorch.
We recommend that you look at the posted solution.

Compare the test loss of this trained neural network with the test loss
of the neural network trained in Task 2. They should have similar test
losses in this case. This is because the dataset has limited complexity but
it is not true in general. In upcoming labs we will use sampling without
replacement unless we say otherwise. ■

12



4 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Code for forward method

Task 2 Train error

Task 2 Test error

Task 2 Paragraph discussing differences between
train and test risks

Task 3 Do not report

Task 4 Train error

Task 4 Test error

Task 5 Test errors for Male and Female applicants

Task 5 Comment on the perils of data

Task 6 Do not report

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 10% of your lab
grade.

13


	Neural Networks
	Pointwise nonlinearities
	Neural network specification
	Neurons and Weights

	Train and Test Sets
	Sampling Without Replacement
	Report

