
Lab 2B: Convolutional Neural Networks

Ignacio Boero, Juan Cerviño, Juan Elenter,
Ignacio Hounie and Alejandro Ribeiro*

November 3, 2023

1 Convolutional Neural Networks

A convolutional neural network (CNN) is a neural network in which the
linear maps that are used in each layer are convolutional filters; see Figure
4. Using hℓk to denote the filter coefficients used at Layer ℓ, a CNN is
defined by the recursion

x0 = x, xℓ = σ
(

zℓ
)
= σ

(
K

∑
k=0

hlk Skx

)
, xL = Φ(x;H). (1)

In (1) we use Φ(x;H) to denote the output of the CNN, with H =
[h11, . . . , hKL] being a tensor that groups all of the filter coefficients that
make up the layers of the CNN.

Notice that since convolutions are linear operations, a CNN is a particular
case of a standard neural network. This being true, a CNN is still a
composition of layers each of which is itself the composition of a linear
map with a pointwise nonlinearity. The only difference is that instead
of generic linear maps, layers use (linear) convolutions.n When we want
to highlight that a neural network is not convolutional, we call it a fully
connected neural network (FCNN).

*In alphabetical order.

1



Layer 1

Layer 2

Layer 3

x0 = x

z1 =
K

∑
k=0

h1k Skx0 x1 = σ
(

z1

)z1

z2 =
K

∑
k=0

h2k Skx1 x2 = σ
(

z2

)z2

z3 =
K

∑
k=0

h3k Skx2 x3 = σ
(

z3

)z3

x1

x1

x2

x2

x3 = Φ(x;H)

Figure 1. A convolutional neural network (CNN) with three layers. A CNN is
a neural network in which the linear maps used in each layer are convolutional
filters.

An important observation to make is that since the nonlinear operations
that are used at each layer are pointwise, the CNN inherits the shift in-
variance of convolutions. This is ready to show but worth highlighting as
a proposition.

Proposition 1 Given a CNN with filter tensor H and an input signal x let
y = Φ(x;H) be the output of the CNN [cf. (1)]. If xs = Sx is a shifted version
of x the CNN output ys = Φ(xs;H) is the corresponding shifted version of y,

ys = Φ(xs;H) = Φ(Sx;H) = SΦ(x;H) = Sy (2)

Proof: In each layer of the CNN we know that convolutions are equivari-
ant to shifts. Thus if the intermediate output of Layer ℓ is zℓ = hℓ ∗ xℓ−1

2



we known that
Szℓ = h ∗ (Sxℓ−1). (3)

We further know that the nonlinear operation σ is pointwise and that it
has the same effect in a component irrespectively of the position of this
component in the vector on which σ is acting. Thus,

σ(Szℓ) = Sσ(zℓ). (4)

Combining (3) with (4) we conclude that each layer is shift equivariant,

Sxℓ = σ
(

h ∗ (Sxℓ−1)
)

. (5)

The result follows because the composition of equivariant layers yields
an equivariant output. Indeed, suppose that we feed input x0 = x to the
CNN. This input results in the observation of x1 at the output of Layer
1. It follows from (5) applied to ℓ = 1 that if the input to the CNN is
Sx0 the output of Layer 1 is Sx1. We can no repeat the same argument
to conclude that if the output of Layer 2 when the input to the CNN is
x0 is x2, the output of Layer 2 when the input to the CNN is Sx0 is Sx2.
Repeating this argument L times shows that if xL = Φ(x;H) is the output
of the CNN when the input is x, the shifted input Sx yields the output
SxL. This is what we wanted to prove. ■

Locality and shift invariance are the motivations for introducing convo-
lutions. CNNs inherit these two properties. We can then think of CNNs
as generalizations of convolutions. We can, in fact, argue that CNNs are
minor variations of convolutions. They are nonlinear operators designed
to stay as close as possible to linear convolutional filters. We just add
pointwise nonlinearities.

Do notice that we are not saying that this minor architectural variation
is irrelevant. Quite the contrary, it has a major effect on the practical
performance of CNNs as we explore in this lab.

Task 1 Program a class to implement CNNs. This class receives as initial-
ization parameters the number of layers L and the number of taps of the
filters of each layer. The number of taps per layer is given as a vector with
L entries. Endow the class with a forward methods that takes a vector
x as an input and works through the recursion in (1) to return the CNN
output Φ(x;H). Use tanh nonlinearities in all layers. ■

3



z1 =
K−1

∑
k=0

h1
k Sk x z2 =

K−1

∑
k=0

h2
k Sk x zG =

K−1

∑
k=0

hG
k Sk x

x

z1 z2 zG

Figure 2. Filterbanks. A filterbank is a collection of convolutional filters that
process the input signal x in paralell. The outputs of each of these filters are called
features and are intended to capture different properties of the input signal.

2 Filterbanks

To make CNNs more effective we need to make them more complex. We
do that by incorporating multiple channels. That is, in each of the layers
we process the input using multiple convolutional filters in parallel. This
is illustrated in Figure 2 where the signal x is sent through a collection
of G filters. If we denote as hg

k the coefficients of the gth filter, Channel g
implements the convolution

yg =
K

∑
k=0

hg
kS

kx, (6)

The output yg us called a feature and the collection of F features is called
a filterbank.

For implementation purposes it is convenient to group the output of the
filterbank in a matrix Y in which each of the columns of Y represents a
different feature yg. Using this definition we can write the filerbank as

Y =
[

y1, y2, . . . , yG
]

=

[
K

∑
k=0

h1
kS

kx,
K

∑
k=0

h2
kS

kx, . . . ,
K

∑
k=0

hG
k S

kx

]
.

(7)
If we further define the filterbank coefficients hk = [h1

k , h2
k , . . . hG

k ] the fil-
terbank in (7) can be rewritten as

Y =
K

∑
k=0

Skxhk. (8)

In (8) the input is a column vector x of dimension N × 1. The filterbank
coefficients hk are row vectors of dimension 1 × G. It follows that the

4



uF1 =
K−1

∑
k=0

hF1
k Sk x uF2 =

K−1

∑
k=0

hF2
k Sk x uFG =

K−1

∑
k=0

hFG
k Sk x

xF

uF1 uF2 uFG

u21 =
K−1

∑
k=0

h21
k Sk x u22 =

K−1

∑
k=0

h22
k Sk x u2G =

K−1

∑
k=0

h2G
k Sk x

x2

u21 u22 u2G

u11 =
K−1

∑
k=0

h11
k Sk x u12 =

K−1

∑
k=0

h12
k Sk x u1G =

K−1

∑
k=0

h1G
k Sk x

x1

u11 u12 u1G

z1 = u11 + u21 + . . . + uF1 z2 = u12 + u22 + . . . + uF2 zG = u1G + u2G + . . . + uFG

Figure 3. Multiple-Input-Multiple-Output (MIMO) Filters.

output Y is a matrix of dimension N × G. In this matrix each separate
column is a different feature. Each different feature is the result of pro-
cessing the input signal in a different way. The intention is that each of
this different ways of processing x results in the extraction of different
pieces of information from x. This is why we call them features.

2.1 Multiple-Input-Multiple-Output (MIMO) Filters

Multiple input (MI) features can be processed with separate filterbanks to
produce multiple output (MO) features. In these MIMO filters the input
is a matrix X and the output is another matrix matrix Y. The MIMO filter
coefficients are matrices Hk and the MIMO filter itself is a generalization
of (8) in which the matrix Hk replaces the vector hk,

Y =
K

∑
k=0

SkXHk. (9)

In (??), the input feature matrix X has dimension N × F and the output
feature matrix Y has dimension N × G. This means that each of the F
columns of X represents a separate input feature whereas each of the G
columns of Y represents an output feature. To match dimensions, the
filter coefficient matrices Hk must be of dimension F × G.

Task 2 Program a class that implements a MIMO filter. This class has as
attributes the length of the filter K and the dimensions F and G of the

5



filter coefficients. The filter coefficients themselves are also an attribute
of the class. Endow the class with a forward method that takes an input
feature X and produces the corresponding output feature Y. ■

To gain more insight on MIMO filters write the input feature as X =
[x1, x2, . . . , xF] and the output feature as Y = [y1, y2, . . . , yG]. We can then
unpack (9) into the expression

yg =
F

∑
f=1

(
K

∑
k=0

h f g
k Skx f

)
:=

F

∑
f=1

u f g. (10)

We then see that (9) represents two different operations: (i) A collection
of F × G filterbanks – the inner sum. (ii) A linear aggregation to combine
outputs of some of these filters – the outer sum.

This is represented in Figure 3. Each of the input features x f is processed
by a filterbank made up of G filters. The coefficients of each of the filters
in this bank are h f g

k and their action on x f results in the creation of feature
u f g. We then proceed to sum all the features u f g associated with a given
g. This is the output feature yg.

Adding a sum of features to a MIMO filter is an ad-hoc solution to avoid
excessive growth in the number of features at the output of each layer.
After processing the input features with separate filterbanks we have a
total of F × G features u f g. Without a step to reduce the number of fea-
tures we may end up with exponential growth in the number of features
in a layered architecture. Summing the features u f g reduces the number
of features to G. It gives explicit control on the number of features at the
output of each layer.

3 Real Convolutional Neural Networks

The MIMO filters of Section 2.1 can be used to define MIMO CNNs. A
MIMO CNN is a neural network in which each of the layers is the com-
position of a MIMO convolutional filter with a pointwise nonlinearity. If
at each layer we denote filter coefficients as Hℓk, the MIMO CNN is given

6



Layer 1

Layer 2

Layer 3

X0 = X

Z1 =
K1

∑
k=0

SkX0H1k X1 = σ
(

Z1

)z1

Z2 =
K2

∑
k=0

SkX1H2k X2 = σ
(

Z2

)z2

Z3 =
K3

∑
k=0

SkX2H3k X3 = σ
(

Z3

)z3

X1

X1

X2

X2

X3 = Φ(X;H)

Figure 4. Multiple-Input-Multiple-Output (MIMO) Convolutional Neural Net-
works (CNNs). CNNs that are used in practice contain several parallel convolu-
tional filters at each layer. This is captured here with the use of multiple features
per layer and the corresponding use of MIMO convolutional filters [cf. (9)].

by the recursion

X0 = X, Xℓ = σ
(

zℓ
)
= σ

(
Kℓ

∑
k=0

SkXHℓk

)
, xL = Φ(x;H). (11)

Thus, we have a composition of layers each of which is itself the compo-
sition of a MIMO convolutional filter with a pointwise nonlinearity.

The CNN of Section 1 was introduced for didactic purposes because al-
most all CNNs used in practice are MIMO CNNs – hence, the title of this
section. For that reason we never call them MIMO CNNs, we just call
them CNNs.

7



3.1 Convolutional Neural Network Specification

To specify a CNN we need to specify the number of layers L and the
characteristics of the filers that are used at each layer. The latter are the
number of filter taps Kℓ and the number of features Fℓ at the output of
the layer. The number of features F0 must match the number of features
at the input and the number of features FL must match the number of
features at the output. Observe that the number of features at the output
of Layer (ℓ− 1) determines the number of features at the input of Layer
ℓ. Then, the filter coefficients at Layer ℓ are of dimension Fℓ−1 × Fℓ.

Task 3 Program a class that implements a CNN with L layers. This class
receives as initialization parameters a CNN specification consisting of the
number of layers L and vectors [K1, . . . , KL] and [F0, F1, . . . , FL] containing
the number of taps and the number of features of each layer.

Endow the class with a forward method that takes an input feature X and
produces the corresponding output feature Φ(x;H). ■

3.2 Convolutions and Convolutional Neural Networks

Convolutions and CNNs are at the same time very similar and very dis-
similar.

Convolutions and CNNs are similar because at a fundamental level CNNs
are just as simple as convolutions. They are, in the end, just a collection of
convolutional filters composed with pointwise nonlinearities. These are
careful choices to maintain the locality and shift equivariance of convolu-
tions.

Convolutions and CNNs are different because the complexity of a CNN
is at some length of the complexity of a convolutional filter. Suppose that
we consider a CNN with 20 features per layer and 5 layers. This CNN
contains a grand total of (20 × 20)× 5 = 2, 000 convolutional filters. This
makes CNNs more expressive than filters. It makes them more capable of
identifying relevant features that we can leverage in the processing of the
input.

It bears repeating that the vast complexity increase of CNNs does not

8



come at the cost of giving up on the fundamental properties of convo-
lutions. Fully connected neural networks are also more complex than
convolutions. They are also more complex than CNNs. But, as we have
seen, they are unworkable.

We close by pointing out that the use of layers is known to make CNNs
more stable to perturbations. This is the reason why deep architectures
with several layers are preferred relative to shallow architectures with a
small number of layers. The reasons why this happen are also known
but their explanation requires the introduction of Fourier transforms and
frequency representations of convolutional filters.

3.3 Audio Processing with Convolutional Neural Networks

We have prepared a dataset similar to the one we used in Lab 2A. We ask
that you process it with a CNN.

Task 4 Load audio data from the link provided in the course site, and
unzip it. This file contains a pytorch tensor with Q = 300 pairs of audio
recordings (xq, yq). Split the dataset into training and testing sets, keep 50
samples for testing. Train a CNN to remove the background noise. This
CNN has 2 layers, the numbers of features per layer are [1, 5, 1] and the
filter lengths are [40, 40]. Use a learning rate of 0.5, batch size of 32 and
train for 20 epochs. Evaluate the train and test loss (use L1 loss as in lab
2A). ■

9



4 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Do not report

Task 2 Do not report

Task 3 Do not report

Task 4 Report training loss

Task 4 Report test loss

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 10% of your lab
grade.

10


	Convolutional Neural Networks
	Filterbanks
	Multiple-Input-Multiple-Output (MIMO) Filters

	Real Convolutional Neural Networks
	Convolutional Neural Network Specification
	Convolutions and Convolutional Neural Networks
	Audio Processing with Convolutional Neural Networks

	Report

