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1 Classification Losses

A classification is a partition of reality. Given realizations x of some object
we ascribe to each of them a unique label yc that marks them as members
of class c. In a classification task we want to train an artificial intelligence
that when presented with an input x predicts a class label ŷ that matches
the label yc ascribed by the real world (Figure 1).

To model classification as empirical risk minimization (ERM) we just need
to define a proper loss. The easiest is to define a hit loss that takes the
value ℓ(y, ŷ) = 1 when ŷ ̸= y and the value ℓ(y, ŷ) = 0 when ŷ = y. To
write this loss formally we define the indicator function I(y = yc) which
takes the values

I(y = yc) = 1 when y = yc, I(y = yc) = 0 when y ̸= yc. (1)

With this definition we can now write the hit loss as

ℓ(y, ŷ) =
C

∑
c=1

I(y = yc)×
[
1 − I(ŷ = yc)

]
. (2)

This is a rather cumbersome expression for the hit loss but it does high-
light that the goal is to have predictions ŷ = yc whenever we observe that
y = yc. It is also a good starting point for generalizations that we discuss
in the next two sections.

*In alphabetical order.
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Figure 1. Classification Problem. Associated with input x nature assigns a unique
and definite class label y = yc. We want to train an artificial intelligence that
predicts the same label ŷ = yc. The hit loss models this requirement [cf. (2)].

1.1 Soft Classification

Class is a particular human obsession. The world rarely assigns unique
labels. It is humans that insist on labels. This is relevant because although
our data is typically labeled by humans and, therefore, contains unique
and definite labels, it is more convenient to make predictions that allow
for uncertainty (Figure 2). Thus, instead of predicting a class we predict
a vector of C scores ŝ = [ŝ1; . . . ; ŝC] in which ŝc represents the predicted
likelihood that class yc is the right class. To train these scores we can
modify the hit loss in (2) as follows,

ℓ(y, ŝ) =
C

∑
c=1

I[y = yc]×
[

max
d

ŝd − ŝc

]
. (3)

The rationale for (3) is that when it comes to make a hard classification
decision we opt for the class with the highest score. We therefore want
to have maxd ŝd = ŝc when the correct class is y = yc. The loss in (3) is
ℓ(y, ŷ) = 0 if this is the case. When maxd ŝd > ŝc the loss in (3) grows
away from ℓ(y, ŷ) = 0 in proportion to how far ŝc is from becoming the
maximum score.
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Figure 2. Soft Classification. Instead of predicting a unique and definite class as
in Figure 1 we predict scores ŝc associated with each class. These scores represent
the likelihood that the real class is y = yc. The cross entropy loss models this
requirement [cf. (5)].

1.2 Cross Entropy Loss

The loss in (3) is a reasonable choice but it is not differentiable with re-
spect to the score variable ŝ. This is a drawback for implementing gradi-
ent descent. To solve this problem we define the soft maximum function

softmax(ŝ) = log
C

∑
d=1

eŝd . (4)

The soft maximum is a differentiable approximation of the maximum
in the sense that softmax(ŝ) ≈ maxd ŝd. We can therefore replace the
maximum maxd ŝd in (3) by the soft maximum function to define the loss

ℓ(y, ŝ) =
C

∑
c=1

I[y = yc]×
[

log
C

∑
d=1

eŝd − ŝc

]
. (5)

This is the cross entropy loss. Its use in classification tasks is standard.

The motivation of the name cross entropy loss comes from transforming
classification scores into classification probabilities. We do that by com-
bining an exponential and a normalization operation,

p̂c =
eŝc

∑C
d=1 eŝd

. (6)
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The vector p̂ = [ p̂1; . . . ; p̂C] is a vector of probabilities because its entries
are p̂c ∈ [0, 1] and add up to ∑C

c=1 p̂c = 1. We can then interpret p̂c as the
predicted probability that the correct class is yc.

We now define the vector of correct probabilities p in which pc = 1 if
y = yc and pc = 0 otherwise. With these definitions the cross entropy in
(5) is equivalent to

ℓ(p, p̂) =
C

∑
c=1

pc × log p̂c =
C

∑
c=1

Pr[y = yc]× log Pr[ŷ = yc]. (7)

This quantity is a variation of the entropy of a probability distribution
which is defined as h(p) = ∑C

c=1 pc × log pc. It is called cross entropy
because it mixes the probability pc of the real probability vector p with
the logarithm log p̂c of the probability distribution of the estimated prob-
ability vector p̂.

This digression gives as another generalization of (5). Suppose that avail-
able labels are not definite. Rather, we are given a probability vector p
whose entries pc represent the probability that the real class is yc. We can
train with this data if we use the loss

ℓ(p, ŝ) =
C

∑
c=1

pc ×
[

log
C

∑
d=1

eŝd − ŝc

]
. (8)

and produce probability estimates using (6).

The next time you are drawn into a heated discussion on gender, race, or
political labels you can point to Equation 8. Classes are not an inherent
property of nature. They are just a human construction and we can just
as well choose to start assigning classification scores.

2 Readout Layers

In Lab 1B we processed audio with a convolutional neural network (CNN).
Our CNN was such that if the input signal contains N entries, the output
signal contains N entries as well. This is unsuitable for a classification
task in which we want the output to be a vector of scores s containing as
many entries as classes.
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Figure 3. Readout. To use CNNs in classification we add a readout layer. This is
a fully connected layer in which the linear map AL is of dimension C × N. This
matches the dimensionality N of previous layers to the dimensionality C of the
number of classes. The output is a vector of likelihood scores for each class.

To sort this out we add a readout layer to match the dimensionalities
of the input and output. A readout layer is just a fully connected layer
at the output. This is illustrated in Figure 3 for a CNN in which for
simplicity we show the last two layers and assume we are processing a
single channel. Instead of a convolutional filter, the last layer is the fully
connected layer,

Φ(x;H) = xL = σ
(

ALxL−1

)
. (9)

If we have input signals x = x0 of dimension N and we have C classes, the
matrix AL is of dimension C × N. This results in an output Φ(x;H) = xL
containing C entries that we can equate to the predicted score s.

In (9) we consider a CNN with layers that have a single channel. In
practice, we have already seen that we have to use CNNs with multiple
channels. This is not a problem but it requires that we reshape the matrix
XL−1 to turn it into a vector. We do that by stacking the columns of XL−1
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on top of each other,

vec(XL−1) =
[

x1
L−1; x2

L−1; . . . ; xFl−1
L−1

]
. (10)

This operation has no conceptual significance. It is just a reshaping of
data. We need to do this to write the readout layer as the matrix multi-
plication in (9) with xL−1 = vec(XL−1).

Task 1 Modify the CNN code of Lab2B to endow it with a method that
implements a single convolutional layer. Add another method to imple-
ment a readout layer. Use these two methods to modify the CNN class to
implement a CNN with readout.

This class receives as initialization parameters the number of layers L and
the dimensions N and C of the input features X and the output scores
s. To specify the L − 1 convolutional layers we also accept the vectors
[K1, . . . , KL−1] and [F0, F1, . . . , FL−1] containing the number of taps Kℓ of
the filters used at each layer and the number of features Fℓ at the output
of each layer.

The forward method of this class takes a matrix X of dimension N × F0
as an input and returns the output Φ(x;H) of a CNN with L − 1 convo-
lutional layers and a readout layer. The dimension of this output vector
is C.

Use Relu nonlinearities in all layers.

2.1 Classification of Time Signals

The dimension of the output of a CNN with a readout layer can be chosen
to have dimension C equal to the number of classes. We can then train a
CNN with readout to classify time signals by solving the empirical risk
minimization problem

H∗ = argmin
H

1
Q

Q

∑
q=1

ℓ
(

yq, Φ(xq;H)
)

. (11)

In (11), the tensor H contains the convolutional filters in Layers ℓ = 1
through ℓ = L − 1 as well as the matrix AL that defines the readout
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layer. The function ℓ(yq, Φ(xq;H)) is the cross entropy loss between the
available class label yq and the vector of scores sq = Φ(xq;H).

When this CNN is deployed to make operational classifications, the out-
put is a vector of scores s = Φ(x;H). Entry sc in this vector is the likeli-
hood we assign to class c. This likelihood can be converted to a hard class
decision by selecting the class with the largest score

c(x) = argmax
d

[
Φ(x;H)

]
d

. (12)

When using CNNs in classification problems we train them to minimize
cross entropy losses. However, it is customary to evaluate their perfor-
mances by counting correct classifications. In particular, if we have a test
set with Q̃ entries we evaluate the CNN with the error rate,

e(H) =
1
Q̃

Q̃

∑
q=1

I
(

yq ̸= Φ(xq;H)
)

. (13)

This is the percentage of erroneous classifications in the test set.

Observe that we can also convert scores s to probabilities using (6). This
is important when we want to gauge the confidence of a classification.
In (12) we assign classes to the highest score. Thus, we predict with the
same confidence whether the second highest score is close to the highest
score or not. Reporting probabilities distinguishes these two situations by
saying that the probability of the most likely class is, say, 90% or 60%.

We must say that since we are training with a cross entropy loss this is
the interpretation of the output that is most reasonable. The use of (12) is
nevertheless more common.

Task 2 Load the data available in dsd.seas.upenn.edu/labs/lab-2c/
This data contains audio samples in which people are speaking the digits
0, 1 and 2. Use the class of Task 1 to train a CNN with a readout layer
to classify the audio signals into the different possible spoken digits. The
CNN should have the following parameters: 2 layers, number of chan-
nels of both layers: 8, kernel size (number of taps) at each layer: 80 and 3
respectively, relu nonlinearities, learning rate: 0.03.

Evaluate the training cross entropy loss and the test accuracy in terms of
the relative number of incorrect classifications.

7

dsd.seas.upenn.edu/labs/lab-2c/


The CNN used in Task 2 has failed at class prediction. This is not un-
expected. We introduced CNNs to overcome the limitations of fully con-
nected neural networks. In adding the pooling operation we have ren-
dered the architecture closer to a fully connected neural network than to
a CNN. We have lost the locality and equivariance that the CNN inherits
from the use of convolutions.

This challenge looks insurmountable, because we have an inherent mis-
match between the nature of the input – a time signal – and the nature of
the output – a class. At some point we need to abandon the time domain.
The solution to this challenge is to reduce the time dimension while re-
taining the structure of time. This is accomplished by pooling, which we
explain in the next section.

3 Pooling

Pooling operators reduce the dimension of the input signal while retain-
ing the structure of time. They do so by introducing a reduction factor ∆,
dividing the time line in windows of width ∆, and extracting information
from every window (Figure 4).

The simplest form of pooling is sampling. Let w = [w0; w1; . . . ; wN−1] be
a signal with N components. We define the sampled signal as the signal
x = [x0; x1; . . . ; xNs ] in which the component xm is given by

xm = wm∆ . (14)

Thus, the sampled signal x copies one out of ∆ entries of w and ignores
the rest. The rationale for ignoring entries is that the values of entries in
a window, say wm∆ and wm∆+1, are not very different and we loose little
information by discarding some of them.

In general, computing some aggregate summary of the entries in a pool-
ing window is more effective than plain sampling. Average pooling re-
places the entries in each pooling window by their average,

xm =
1
∆

(
wm∆ + wm∆+1 + . . . + wm∆+(∆−1)

)
. (15)

Another common approach to summarizing entries in a pooling window
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Figure 4. Pooling. We introduce a reduction factor ∆, divide time in windows of
width ∆, and summarize information from each window. Pooling yields signals
of smaller dimension that retain the locality and shift equivariance of time.

is to compute the maximum value,

xm = max
(

wm∆, wm∆+1, . . . , wm∆+(∆−1)

)
. (16)

This is called max pooling. Max pooling is more common than average
pooling and both are more common than sampling. In any case, pooling
is effective when the signal w does not change much within the pooling
window. When this is the case, sampling, average pooling, and max
pooling all produce similar summary signals x.

The pooling operations in (14)-(16) apply to individual vectors. In CNNs
we want to pool multiple features. This is done by pooling each feature
individually. Given the matrix feature W = [w1; w2; . . . ; wF] the pooled
matrix feature X = [x1; x2; . . . ; xF] contains the same number of features
F and is such that each of the individual vector features x f is pooled
separately. Thus, Component m of Feature f is given by

x f
m = pool

(
w f

k∆, w f
k∆+1, . . . , w f

k∆+(∆−1)

)
, (17)

where the operation pool(·) stands in for either sampling [cf. (14)], aver-
age pooling [cf. (15)], or max pooling [cf. (16)].
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3.1 Locality and Equivariance

Pooling operators retain the locality and equivariance of time. The pooled
signal x is also a time signal except that its components are more spaced
out. If we recall the definition of the sampling time in Lab 2A, the signal
w has entries spaced by the sampling time Ts and the signal x has entries
spaced by ∆Ts. This is important because it means that the pooled signal
x can be processed with a convolutional filter. In a layered architecture,
this fact implies that signals can be pooled at Layer ℓ− 1 and processed
with a convolutional filter at Layer ℓ (Section 4).

Although somewhat obvious it is worth remarking that the summary sig-
nal contains a smaller number of entries. If N is a multiple of ∆, the
number of entries of x is Ns = N/∆. Otherwise, the number of entries of
x is given by the integer division Ns = N ÷ K + 1.

This is important in a classification task because it is almost always the
case that the number of classes C is much smaller than the number of
entries in the input signal X. Thus, the use of pooling at intermediate
layers ends up reducing the complexity of the readout layer. This is a
eureka moment. Fully connected neural networks do not work for large
dimensional signals but they do work for low dimensional signals. We
can then use pooling to progressively reduce the dimension of the input
signal. All the while we retain the structure of time and the ability of
processing with convolutional layers. Once we reach a point at which
signals are of sufficiently low complexity we can train an effective readout
layer. This is the CNN architecture used in classification tasks that we
introduce in the following section.

4 CNNs for Classification Tasks

Combining pooling and readout yields the CNN architecture that is used
for classification tasks (Figure 5). In this architecture we have L − 1 con-
volutional layers and one readout layer. Each of the convolutional layers
involves a convolutional filter, a pointwise nonlinearity, and a pooling
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Figure 5. CNN with two convolutional layers and one readout layer. The convolu-
tional layers include pooling operations that progressively reduce the number of
components of the outputs of each layer. The readout layer maps the time signal
at its input to a vector of classification scores at the output.
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operation,

Zℓ =
K1

∑
k=0

SkXℓ−1Hℓk, Wℓ = σ
(

Zℓ

)
, Xℓ = pool

(
Wℓ

)
. (18)

The multiple feature layer input Xℓ−1 is processed with a MIMO convo-
lutional filter with coefficients Hℓk. The filter output Zℓ is processed with
the pointwise nonlinearity σ(·). The output of this operation is a ma-
trix of features Wℓ whose dimension is reduced by the pooling operator
pool(·) to yield the Layer ℓ output Xℓ.

The input Xℓ−1 is of dimension Nℓ−1 × Fℓ−1. The output Xℓ is of dimen-
sion Nℓ × Fℓ. The change in the length of the features from Nℓ−1 to Nℓ is
determined by the pooling operator pool(·). The change in the number
of features from Fℓ−1 to Fℓ is determined by the filters of the MIMO filter.
The coefficients Hℓk are of dimension Fℓ−1 × Fℓ.

We follow the L − 1 convolutional layers with a readout layer,

ZL = ALvec
(

XL−1

)
, xL = σ

(
xL

)
. (19)

The input to Layer L is vec(XL−1). This is the output of Layer L − 1
rearranged in vector form. This input is multiplied by the matrix AL to
produce the intermediate feature ZL. This is then passed through the
pointwise nonlinearity σ(·) to produce the layer’s output XL.

The input vector vec(XL−1) is of dimension NL−1 × FL−1. The output
vector is of dimension NL. This implies that the matrix AL has NL−1 ×
FL−1 columns and NL rows.

The output of Layer L is also the output of the CNN. We write this for
reference as

Φ(x;H) = xL, (20)

where the tensor H contains the filters of the convolutional filters used
in Layers 1 through L − 1 and the coefficients AL of the fully connected
layer. The output Φ(x;H) can be interpreted as a vector of classification
scores and used in the classification empirical risk minimization problem
shown in (11).

A CNN with pooling and readout resembles a CNN with readout only.
Both include L − 1 convolutional layers followed by a fully connected
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readout layer. The difference is that in the CNN with pooling the con-
volutional layers process signals of progressively lower dimension. Thus,
the readout matrix AL is of lower dimension too. This is expected to avoid
the failure we observed in Task 2.

Task 3 Modify the CNN of Task 1 to incorporate pooling. This can be
done by modifying the method that implements convolutional layers to
incorporate the pooling operation.

As in any CNN the initialization parameters include the number of layers
L along with vectors [K1, . . . , KL−1] and [F0, F1, . . . , FL−1]. These vectors
contain the number of taps Kℓ of the filters used at each layer and the
number of features Fℓ at the output of each layer.

Since we are incorporating pooling the initialization parameters must also
include the vecor [N0, N1, . . . , NL] containing the dimension Nℓ of the fea-
tures at the output of each layer. Notice that N0 matches the dimension
of the input signal and NL = C matches the number of classes.

The forward method of this class takes a matrix X of dimension N0 × F0
as an input and returns the output Φ(x;H) of a CNN with L − 1 con-
volutional layers and a readout layer. The dimension of this output is
NL × 1.

Use relu nonlinearities in all layers. Use max pooling in all convolutional
layers where pooling is implemented. ■

Task 4 Load the same data used in Task 2. Use the class of Task 3 to train
a CNN with a readout layer to classify the audio signals into the different
possible spoken digits. The CNN should have the following parameters:
2 layers, number of channels per layer: 8, kernel size (number of taps) at
each layer: 80 and 3 respectively, learning rate: 0.05, pooling layers: max
pooling.

Evaluate the training cross entropy loss and the test accuracy in terms of
the relative number of incorrect classifications.
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5 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Do not report

Task 2 Report training cross entropy loss

Task 2 Report percentage of incorrect classifications

Task 3 Do not report

Task 4 Report training cross entropy loss

Task 4 Report percentage of incorrect classifications

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 10% of your lab
grade.

Evaluate the training cross entropy loss and the test accuracy in terms of
the relative number of incorrect classifications.
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