
Lab 2A: Audio Processing

Ignacio Boero, Juan Cerviño, Juan Elenter,
Ignacio Hounie and Alejandro Ribeiro*

September 8, 2024

1 Audio Signals

Audio is mathematically modeled as a function x(t) in which t repre-
sents time and x(t) is an electric signal that is generated by transforming
pressure waves with a microphone. The same pressure waves can be re-
constructed from the electrical signal using a speaker.

We can create a digital representation of an audio signal through sam-
pling; see Figure 1. To do so define a sampling time Ts and a number
of components N and proceed to sample the signal x(t) every Ts units of
time. This results in the digital audio signal x, which is mathematically
represented by the vector

x = [x(0); x(Ts); x(2Ts); . . . ; x((N − 1)Ts)] = [x0; x1; x2; . . . ; xN−1]. (1)

A digital audio signal is more convenient than the original analog repre-
sentation because it is easier to process. The vector x can be manipulated
to extract information or make it better in a number of ways. In this
lab we have excerpts of human speech that are contaminated with back-
ground noise. Our goal is to remove as much of the background noise as
possible.

*In alphabetical order.

1

0 Ts 2Ts 3Ts 4Ts 5Ts 6Ts 7Ts 8Ts 9Ts 10Ts 11Ts 12Ts 13Ts 14Ts t

Figure 1. Sampling. Audio signals are waveforms in continuous time with digital
representations obtained through sampling. Digital representations are advanta-
geous because they are easier to process.

Task 1 Load audio data from the link provided in the course site , and
unzip it. This file contains a Pytorch tensor with Q = 1500 pairs of au-
dio recordings (xq, yq). The signals xq are human speech recorded with
background noise. The signals yq are the same speech files recorded with-
out background noise. Each of these audio signals contains N = 32000
samples recorded with a sampling time of Ts = 17µs.

Play sample speech recordings for clean and contaminated audio. �

It is clear that this is a problem that we can formulate as an empirical risk
minimization (ERM). Given audio inputs x contaminate with background
noise we want to produce estimates ŷ of the corresponding clean audio
signals y. Using a learning parametrization that produces estimates ŷ =
Φ(x; H) we want to find the parameter H that minimizes the empirical
risk over the Q audio pairs for a given loss function `(y, ŷ),

H∗ = argmin
H

1
Q

Q

∑
q=1

`
(

yq, Φ(xq; H)
)

. (2)

It is interesting that this mathematical formulation is searching for an
artificial intelligence (AI) that is trying to undo a natural effect – rather
than mimicking a natural effect. This point is emphasized in Figure 2.
The original data are clean audio inputs yq. These data are contaminated
with background noise to produce the audio files xq. Our AI takes as
inputs these signals contaminated with background noise and attempts
to estimate the clean audio signals that generated the data contaminated
with background noise. This difference in interpretation of the role of the
AI does not alter the mathematical formulation of the ERM problem.

2

xq Φ
(

xq; H) ŷq = Φ(xq; H)

f (·) yq

argmin
H

1
Q

Q

∑
i=1

`
(

yq, Φ(xq; H)
)

H∗

Figure 2. Elimination of background noise. We can formulate noise reduction as
an empirical risk minimization problem [cf. (3)]. While it does not change the
mathematical formulation, it is interesting that the artificial intelligence undoes
the action of the world rather than mimic the world.

Throughout this lab we will use L1 losses to compare clean audio signals
and their estimates. The L1 loss is defined as the sum of the absolute val-
ues of individual component differences. If we write y = [y0; . . . ; yN−1]
and ŷ = [ŷ0; . . . ; ŷN−1] the L1 loss is given by

`
(

y, ŷ
)

=
∣∣ y− ŷ

∣∣ =
N−1

∑
n=0

∣∣ yn − ŷn
∣∣. (3)

We are now ready to make a first attempt at training an AI to remove
background noise from audio signals.

Task 2 Split the data loaded in Task 1 into a test set with Q̃ = 100 samples
and a training set containing the remaining samples. Use as learning
parametrization a neural network with N1 = 100 hidden neurons in a
single layer.

Evaluate the training and test error. Play some sample speech record-
ings of entries of the test dataset after they are cleaned with the neural
network. You are likely surprised by the sound. Comment. �

The neural network in Task 2 has failed to clean the audio files. This is a
surprise because we have seen neural networks work in Lab 1C and the
problem formulation in (3) is essentially the same problem formulation.
What has changed between Lab 1C and Lab 2A is dimensionality. In Lab

3

0 10 20 30 40 50
Epoch Index

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
ea

n
Sq

ua
re

d
Er

ro
r

Mean Squared Error (MSE) as a Function of Epoch Index
Training Set MSE
Test Set MSE

Figure 3. Train and test error evolution for fully connected neural network.

1Aa we were processing signals with N = 2 components. We are now
processing signals with N = 32, 000. The complexity of the data is such
that a neural network fails to learn any meaningful action that may result
in removal of background noise.

This phenomenon is typical. When we consider problems in which the in-
put dimension is small pretty much any learning parametrization works
fine. Neural networks, in particular, work well and have become a de-
facto standard. When we consider signals in high dimensions, not all
parameterizations work well. Finding good parameterizations requires
that we leverage the structure of the signal. In the case of signals in time,
this is done with convolutions.

2 Convolutions

Convolutions are linear operations that we use to process time signals.
Consider then an input signal x with N components x(n) along with a
filter h having K coefficients h(k). The convolution of the filter h with the
signal x is a signal y = h ∗ x. This signal has N components x(n) which
are given by

y(n) =
K−1

∑
k=0

h(k)x(n− k), (4)

4

In this definition we adopt the convention that x(n− k) = 0 whenever the
argument (n − k) /∈ [0, N − 1]. This is needed because for some values
of n and k we may have that n − k is outside of the range [0, N − 1] –
for example, when n = 0 and k > 0. When this happens x(n − k) is
not defined. It follows that without the adoption of some convention for
these values of the index (n − k) the definition in (4) is improper. This
convention is called a border artifact and it is not a significant issue if
K � N. This is not required in the definition in (4) but it is almost always
true in practice.

2.1 Shift Sequences

Convolutions can be equivalently written in terms of shift operators. This
is a more abstract yet more illuminating definition that is also easier to
implement. As its name indicate, a shift operator shifts a signal in time.
Formally, a shift operator S acts on a signal x to produce the signal z = Sx
whose components are

z1 = Sx =⇒ z1 = [0, x(0), x(1), . . . x(N − 2)]. (5)

The signal z1 has the same entries as the signal x but the entries of x
have moved one time index up. The n − 1st component of x is the nth
component of z1. There is a border effect for n = −1, but we can maintain
the interpretation if we maintain the same convention that x(−1) = 0.

The shift operator can be applied repeatedly. If we apply the shift opera-
tor to z1 we end up with the signal

z2 = Sz1 = S2x =⇒ z2 = [0, 0, x(0), x(1), . . . x(N − 2)]. (6)

This signal has the same components of z1 but they have moved one time
index up. Since these were the entries of x(n) moved one index up, the
entries of z2 are the same entries of x but moved 2 time indexes up.

We can repeat application of the shift operator however number of times
we want. These results in a sequence of shifted signals that we define
recursively as

zk = Szk−1 = Skx =⇒ zk = [0, . . . , 0, x(0), x(1), . . . x(N − k)]. (7)

5

xn xn−1 xn−2 xn−3

S S S

+ + + +

z0 = x z1 = Sx z2 = S2x z3 = S3x

h0 h1 h2 h3

h ∗ x

Figure 4. Convolutions. This block diagram representation of a convolution is
called a shift register. It represents convolutions as linear combinations of shifted
versions of the input signal x

This is a signal in which the components of x are moved k time indexes
up, with the convention that we add k zeros at the beginning of the vector
zk to account for the entries of x that are not defined.

The collection of signals zk is called the shift sequence. If we further
denote z0 = x = S0x we have a collection of shifted versions of x. The
signal z0 is a 0-shifted version of x, the signal z1 is a 1-shifted version of
x, and the signal z2 is a 2-shifted version of x. In general, the signal zk is
a k-shifted version of x. Using the definition of the shift sequence we can
equivalently write convolutions as

y = h ∗ x =
K−1

∑
k=0

h(k)zk =
K−1

∑
k=0

h(k)Skx. (8)

The expression in (8) says that convolutions are linear combinations of
components of the shift sequence. That is, linear combinations of shifted
versions of the input signal x.

2.2 Shift Registers

A block diagram representation of (8) is shown in Figure 4. This is called
a shift register. The input to the shift register is a signal x. The signal is
fed to a chain of shift operators S . Each of these shift operators delays
the signal by one unit of time. All of the resulting delayed signals contain
the same components of x but their positions are shifted. Thus after

6

passing through k shift operators we have the signal zk = Skx in which
the (n− k)th component of the original input x has been moved to time
position n. That is,

(Skx)n = zk(n) = x(n− k) (9)

The convolution h ∗ x is obtained by taking the outputs of each delay
element, scaling them by the filter coefficient hk and summing them up.

Task 3 Implement a class to represent convolutional filters with K taps.
In this class K is an initialization parameter and the filter taps hk are class
attributes. Endow the class with a forward method that takes a signal x
as an input and produces as an output the signal y = h ∗ x.

To implement the forward method of this class you can use (4) or (8), but
the latter is more efficient. You need to pay attention to border effects. �

3 Locality and Shift Equivariance

Convolutions have two properties that make them useful in the process-
ing of signals in time: locality and equivariance.

We say that convolutions are local because the output y(n) depends only
on input signal values x(n − k) with k ≤ K [cf. (4)]. Thus, the output
y(n) does not depend on input values that are farther away than K time
units. Since we often choose K � N, this means that only a comparatively
small number, K + 1, of input components affect each output component.
Even if K is close to N it is worth pointing that (4) explicitly depends
on the time difference n − k and thus, nearby components of the input
are processed with a coefficient that is explicitly different from the coeffi-
cient that processes far away information. This matches the intution that
nearby and far away information are explicitly different.

We say that convolutions are equivariant to shifts because a shift of the
input signal x is equivalent to a shift of the output signal y. This is
formally stated next

Proposition 1 Given a filter h and an input signal x let y = h ∗ x be the
convolution of h and x [cf. (8)]. If xs = Sx is a shifted version of x the

7

convolution output ys = h ∗ xs is the corresponding shifted version of y,

ys = h ∗ xs = h ∗ (Sx) = S(h ∗ x) = Sy (10)

Proof: This is easiest to see from the shift operator expression in (8).
Using this expression we write the convolution between h and the shifted
signal xs as

ys = h ∗ xs =
K−1

∑
k=0

h(k)Skxs. =
K−1

∑
k=0

h(k)Sk(Sx). (11)

We now use the fact that applying k shifts to a signal to which shift has
been applied is the same as shifting the signal by k + 1 time units. We
therefore have

ys =
K−1

∑
k=0

h(k)Sk+1x. (12)

Observe now that all the summands in the right hand side of (12) have
at least one shift. Further observing that a sum of shifted signals is the
same as shifting a sum we can pull out one shift as a common factor,

ys = S
(K−1

∑
k=0

h(k)Skx
)

. (13)

To conclude the proof just observe that the sum in (14) is the convolution
y = h ∗ x. Using this fact yields,

ys = S(h ∗ x) = Sy. (14)

This is the expression in (10) that we wanted to prove. �

Proposition 1 shows that convolutions and shift operators commute. It is
equivalent to shift a signal before it is processed by a convolution or after
it is processed by a convolution. This is why we say that convolutions are
equivariant to time shifts.

Shift equivariance is a fitting property because the processing of a time
signal should be independent of the time index. Time t = 0 marks the
time at which we commence observation and is therefore arbitrary. Shift
equivariance also implies that the way in which different components are
processed is the same. This is useful in learning because whatever we

8

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch Index

0.5

1.0

1.5

2.0

2.5

3.0

M
ea

n
Sq

ua
re

d
Er

ro
r

1e 7
Mean Squared Error (MSE) as a Function of Epoch Index

Training Set MSE
Test Set MSE

Figure 5. Train and test error evolution for convolutional filter.

observe at a particular point in time is used to process the signal at that
particular time instance and it is also used to process the signal at other
time instants. This has a multiplier effect on the number of examples that
we are using in the empirical risk.

Task 4 Split the data loaded in Task 1 into a test set with Q̃ = 100 samples
and a training set containing the remaining samples. Use the class of Task
3 to train a convolutional filter with K = 10 taps to remove background
noise.

Evaluate the test error. Play some sample speech recordings of entries of
the test dataset after they are cleaned with the neural network. You are
likely surprised by the sound. Comment. �

Contrary to the fully connected neural network of Task 2, this simple
linear convolutional filter works well. This illustrates the importance of
leveraging signal structure in machine learning. In Lab 2B we will see
how to use convolutions to construct convolutional neural networks.

9

4 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically, give us the following:

Question Report deliverable

Task 1 Do not report

Task 2 Report training loss

Task 2 Report test loss

Task 2 Paragraph with conclusions drawn from the
fact that this neural network does not work

Task 3 Do not report

Task 4 Report test loss

Task 4 Paragraph with conclusions drawn from the
fact that this neural network does work

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 10% of your lab
grade.

10

	Audio Signals
	Convolutions
	Shift Sequences
	Shift Registers

	Locality and Shift Equivariance
	Report

