
Lab 6: Language Models

Javier Porras-Valenzuela and Alejandro Ribeiro

October 22, 2024

1 Language Sequences

We can think of language as a time series. In this interpretation, each
word in a sentence corresponds to the equivalent of a different point in
time and the words themselves represent different vectors of the time
series. Consider as an example the first lines spoken by Miranda in The
Tempest1:

If by your art, my dearest father, you have put the wild waters in
this roar, allay them.

We can, as we illustrate in Figure 1, parse this sentence as a time series. In
this time series the first vector is x0 = “If”, the second vector is x1 = “by”,
the third is x2 = “your”, and so on.

If we interpret language as a time series, we can use a transformer to
predict the next word in a sequence as we did in Chapter 5. If we then
execute this predictor recursively, we can use it to predict several words
in a sequence. This is a strategy for generating language.

The first challenge to implement this strategy is how to represent words
numerically. We do that with word embeddings as we discuss in the
following section.

1In honor of the best Miranda.

1

If by your art , my dearest father , you have put

Figure 1. Language is a Time Series. We parse sentences as time series in which
each word corresponds to the equivalent of a different point in time and the words
themselves represent different vectors of the time series.

2 Word Embeddings

A simple approach is to encode words in the index of a long vector. For-
mally, suppose that we are given a collection of texts that collectively
contain a total of c words. We then consider a set of c vectors ei whose
length is also c. These vector have all zero entries except for the ith entry
which we set to 1,

(ei)i = 1 and (ei)j = 0 for i ̸= j. (1)

We use the vector ei to encode the ith word in the corpus.

In corpuses used in practice we have thousands of different words and
anywhere between hundreds of thousands to trillions of sentences. In
this lab we work with a subset of Shakespeare’s plays which contains
c = 14, 295 different words and a total of 292,072 words in the corpus.
But to illustrate ideas let us work with a corpus made up of just two
quotes:

If by your art, my dearest father, you have put the wild waters in
this roar, allay them.

Sir, are not you my father?

In this corpus we have a total of 24 different words including 3 punc-
tuation marks. We therefore represent the words in the corpus with
c = 24 vectors of length c = 24. Proceeding in the order of the sen-
tence, the vector e1 = [1, 0, . . . , 0] represents the word “If,” The vector

2

e2 = [0, 1, 0, . . . , 0] represents the word “by” and so on. The word “father”
is the eight word that appears in the sentence and is therefore represented
by the vector e8. This vector’s value at index 8 is (e8)8 = 1 and all of its
other entries are zero.

When the same word appears again in the corpus, we encode it with the
same vector. E.g., when the word “father” appears a second time we still
encode it with the vector e8. This also happens with the comma (“,”)
which appears three times and is encoded with the vector e5 in all three
appearances and with the words “my” and “you” that appear twice and
are encoded in the vectors e6 and e9. So encoded, our corpus becomes:

e1 e2 e3 e4 e5 e6 e7 e8 e5 e9 e10 e11 e12 e13 e14 e15 e16 e17 e5
e18 e19 e20

e21 e5 e22 e23 e9 e6 e8 e24

This is a defilement of Shakespeare’s work. However, this representation
of the corpus can be processed with numerical techniques.

Encoding language with these index vectors is not creative and does not
work well. We discuss more interesting and useful word embeddings in
the next section.

Task 1 Get the data for this lab from dsd.seas.upenn.edu/labs/lab6 and
load it to your environment. This is a text file containing around 40,000
lines of dialogue from Shakespeare’s plays. Split the text into words,
defined here to include punctuation marks and line breaks. We associate
words with vectors ei as in (1). Since it it would be wasteful to store
vectors in which all but one entry is 0 we just store the index of the vector
that represents each individual word. E.g., if “father” is represented by
the index vector e8 we do not store e8 to represent this word. We just
store the index i = 8.

Implement a function that turns a word into an index and the inverse
function that turns an index into a word. We recommend that you use
the code that we provide for this task. It is a somewhat cumbersome and
not very enlightening activity.

3

https://dsd.seas.upenn.edu/labs/lab6

Figure 2. Heat map of the cooccurrence matrix. Pairs of words with a brighter
color appear more frequently. You can see from the bright columns that some
words cooccur with a lot of other words. For example, the words “the”,“and”,
“to”, and special characters like ‘,” or ‘.” cooccur very frequently.

2.1 Cooccurrence Matrices

To create richer word embeddings we leverage the cooccurrence matrix C.
To construct this matrix we consider a window of length W + 1 and scan
the corpus for joint occurrences of words ei and ej. The cooccurrence Cij
is the number of times that ej appears in a window centered at ei. If we
index the corpus by an index t and use wt to represent the tth word in
the corpus, we can write cooccurrences as,

Cij = ∑
t

I(wt = ei) =
u=W/2

∑
u=−W/2

I(wu = ej), (2)

where we assume that the window is even for simplicity. In (2) the first
indicator function I(wt = ei) = 1 only when the window is centered at
wt and wt = ei. The second indicator function I(wu = ej) = 1 whenever
the word ej appears in the window centered at wt. Thus, the second
sum counts the number of times that ej appears centered in a window
centered at wt = ei. The first sum is counting the number of times that
ei appears in the corpus.

4

The cooccurrence matrix C is relevant because related words tend to ap-
pear near each other and they also tend to appear next to words that
indicate their relationships. In an extensive corpus we expect to find sev-
eral cooccurrences of the words “birds” and “fly” indicating that these
two words are related. We do not expect to see many cooccurrences of
“dogs” and “fly” because dogs do not fly. We also expect to see cooccur-
rences of the words “bird” and “albatross” and of the words “bird” and
“swallow,” indicating that there is some relationship between “albatross”
and “swallow.”

We highlight that the cooccurrence matrix C is symmetric,

C = CT ⇔ Cij = Cji (3)

This is because whenever the word ej appears in a window centered at
an occurrence of the word ei, these two words are less than W/2 words
apart. This implies that the word ei must appear in a window centered at
an occurrence of the word ej

Task 2 Compute the cooccurrence matrix for the Shakespeare corpus loaded
in Task 1. Use a window of length W = 10.

2.2 Eigenvector Embeddings

A vector vk is said to be an eigenvector of the cooccurrence matrix C if
there exist a constant λk such that

Cvk = λkvk. (4)

Eigenvectors are peculiar vectors because the matrix multiplication Ce
yields a vectors that is, in general, quite different from e. In the case of
an eigenvector, the product Cvk = λkvk is a simple scaling of vk. All of
the components of vk are multiplied by the same number.

It is known that the symmetric matrix C ∈ Rc×c has c distinct eigenvec-
tors. It is customary to order the corresponding c eigenvalues from largest
to smallest so that λk ≥ λℓ when k < ℓ. Since eigenvector vk is associ-
ated with eigenvalue λk, the eigenvectors inherit this order. When k < ℓ
eigenvector vk is associated with an eigenvalue that is not smaller than
the eigenvalue associated with eigenvector vℓ – it is most often larger. We

5

will say that eigenvector vk is not smaller than eigenvector vℓ or that vk
is larger than vℓ if λk > λℓ.

It is also customary to group eigenvectors in the eigenvector matrix

V = [v1, v2, . . . , vc], (5)

in which Column k registers the value of Eigenvector vk. The eigenvec-
tor matrix is an n × n matrix. It has c columns representing c distinct
eigenvectors which have c rows each.

We consider now a number n ≤ c and define the dimensionality reduction
matrix Vn grouping the first n eigenvectors of C,

Vn = [v1, v2, . . . , vn]. (6)

This is a tall matrix because it has c rows but only n columns. These
columns coincide with the first n columns of V. Instead of storing all
eigenvectors, we are storing only the n largest eigenvectors of C.

We use the dimensionality reduction matrix Vn to construct representa-
tions of vectors e ∈ Rc in a space of dimensionality n. These representa-
tions are

x = VT
n e. (7)

We say that this is a dimensionality reduction because x ∈ Rn is a vector
with n components, which is (much) smaller than the number of compo-
nents c of the vector e ∈ Rc.

We use dimensionality reduction to compute word embeddings. Given
the collection of words ei, we transform them into the collection of em-
beddings

xi = VT
n ei. (8)

Representations xi are preferable to representations ei because they have
smaller dimensionality. They also turn out to capture some semantic
properties in the sense that vectors xi and xj that are close represent
similar words. This is different from the index embeddings ei in which
comparisons between different vectors ei and ej have no meaning.

6

Figure 3. Principal component analysis (PCA) transform coefficients of word
vectors. For word vectors ei, PCA transform coefficients with large index k are
small. This means that we can capture most of the information contained in a
word vector ei in its reduced dimension representation xi = VT

n ei [cf. (8)].

Task 3 Compute the first n = 256 eigenvectors of the cooccurrence matrix
computed in Task 2. Use these eigenvectors to compute the eigenvector
embeddings of all of the c words in the corpus loaded in Task 1. Store the
corpus using these eigenvector embeddings. This is the time series with
which we will work in subsequent tasks.

2.3 Principal Component Analysis

The principal component analysis (PCA) transform of a vector e is its
projection in the eigenvector space of C,

y = VTe. (9)

This is similar to the dimensionality reduction operation in (7) except that
we are using all c eigenvectors instead of the largest n.

The PCA representation in (9) has the important property that it can be
undone by multiplication with the eigenvector matrix. I.e, given the PCA
transform y in (9), we can recover the original vector e as

e = Vy. (10)

7

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Figure 4. Language time series with eigenvector encodings. The xi vectors in
this time series are eigenvector encodings of the words in Figure 1. These vectors
represent words in a manner that can be processed with linear algebra operations.

The combination of (9) and (10) indicates that e and y are equivalent
representations of the same information. Given e we can compute y and
given y we can compute e.

The same is not true of the dimensionality reduction transformation in
(7). When going from e to x we loose information precisely because we
are reducing dimensionality. In this context it is interesting to implement
the dimensionality recovery operation,

ẽ = Vnx = Vn

(
VT

n e
)

, (11)

and ask the question of how close the recovered vector e is to the original
ẽ. The answer is that for word vectors ei the error is small. That is, for
most word vectors,

ẽi = Vnxi = Vn

(
VT

n ei

)
≈ ei. (12)

We have a good theoretical understanding of why this happens. In the
context of this lab it suffices for us to verify that this is true empirically.
In Figure 3 we illustrate the values of the PCA components yik of some
representative word vectors ei. These PCA components are the entries of
the PCA transform vectors yi = VTei [cf. (9)] using the eigenvectors
of the cooccurrence matrix C of the Shakespeare corpus that we use in
this lab. We see that the value of PCA components yik decreses with
increasing k.

8

3 Language Transformers

Using the eigenvector embeddings of Section 2.2 the language time series
of Figure 1 becomes the time series of Figure 4. Points in time in the for-
mer are associated with words. Points in time in the latter are associated
with vectors xt ∈ Rn. These vectors represent words in a manner that can
be processed with linear algebra operations. This is not different from the
time series we encountered in Chapter 5. That the time series represents
language is irrelevant for its processing.

We use here a softmax attention transformer with multiple heads to pro-
cess language sequences. For reference, a transformer with multiple
heads is defined by the recursion,

Ah
ℓ = sm

(
(Qh

ℓXℓ−1)
T(Kh

ℓXℓ−1)
)

, (13)

Yh
ℓ = Wh

ℓ
T

Vh
ℓ Xℓ−1 Ah

ℓ
T

, (14)

Xℓ = Xℓ−1 + σ

(H

∑
h=1

Yh
ℓ

)
. (15)

The input to the transformer is a sequence of T eigenvector word embed-
dings X0 = X and its output XL = Φ(X,A) is another sequence of T eigen-
vector word embeddings. The trainable tensor A = {Qh

ℓ , Kh
ℓ , Vh

ℓ , Wh
ℓ}

contains all of the query, key, value, and dimension recovery matrices
of all heads and layers. We use the output sequence to predict the next
word, xT , in the sequence in Section 4.

Equation (13) is the computation of softmax attention coefficients Ah
ℓ for

Layer ℓ and Head h. We use these attention coefficients to create con-
textual representations Yh

ℓ in (14). The output of Layer ℓ is computed in
(15) by summing all heads and passing the output through a nonlinear
operation. We also add the skip connection Xℓ−1 to the output of Layer ℓ
of the transformer.

Recall that in (13) and (14) we create the intermediate representations
Qh

ℓXℓ−1 (queries), Kh
ℓXℓ−1 (keys), and Vh

ℓXℓ−1 (values) which are of di-
mension m ≪ n. In this lab and in language models in general the reduc-
tion of dimension is aggressive. We have here that n = 256 at the input
and choose m = 32 for intermediate representations.

9

Task 4 Code a Pytorch module to implement a the language transformer
as specified by (13)-(15). This transformer takes sequences of length T and
dimension n as inputs and produces sequences of length T and dimension
n as outputs. Make the number of layers L and the number of heads H
parameters of the transformer. Queries, keys and values are of dimension
m, which is also a parameter of the transformer. Use relu nonlinearities
at each layer.

This is the same transformer of Lab 5. It is a copy and paste task. That
the time series represents language is irrelevant.

4 Next Word Prediction

To predict word xT we read the output XL = Φ(X,A) of the transformer.
A possible approach is to take the average across time. To set up this
readout strategy let Xu denote a sequence of T words – in the form of
eigenvector embeddings – starting at time u,

Xu =
[

xu, xu+1, . . . , xT+u−1
]
= xu:u+T−1. (16)

This is a recorded history of the language sequence. Our goal is to predict
the next word xu+T using this recorded history. We do that using the
average of the output of the transformer in (13)-(15),

x̂u+T =
[

Φ(Xu,A)
]
1. (17)

We then train the tensor A = {Qh
ℓ , Kh

ℓ , Vh
ℓ , Wh

ℓ} to maximize prediction
accuracy over the corpus. Utilizing a mean squared loss (MSE), the pre-
diction task reduces to

A∗ = argmin
A

1
C

C−1

∑
u=0

∥∥∥ Φ
(

Xu, A
)
1 − xu+T

∥∥∥2
. (18)

In (18) we compare the estimate x̂u+T read out from the transformer’s
output as per (17) with the true next word xu+T . We average the resulting
MSE loss over the corpus and seek the tensor A∗ that minimizes it. Notice
that to simplify notation we sum over the whole corpus. In reality, we
can’t predict the last T words because we are using histories Xu of length
T. In fact, we have several other limitations in the construction of the

10

training dataset. We may, e.g., want to avoid running over the end of a
play, or the end of an act. We choose to ignore these practicalities as they
have little effect.

Task 5 Split the corpus loaded in Task 3 into a training set containing 90%
of the total number of words and a test set containing 10% of the words.
Recall that this is a time series of word embeddings. Use this training set
to train a transformer that predicts the next word embedding using the
loss in (18). Use T = 64 for the length of the history Xu. Transformer
parameters are your choice. If you need a recommendation, use L = 6
H = 8 and m = 32.

Evaluate the test MSE and compare it to the train MSE. Both of these MSE
values indicate good prediction. However, this does not mean that we are
making good predictions of the next word in the sequence. Explain.

4.1 Probability Readout

The predictions x̂u+T in (17) may have a small MSE when compared to
the observed words xu+T but they are not a good strategy for estimating
the next word. This is because x̂T need not be a valid word. Indeed, it
most likely will not be a valid word.

Word ei is represented by the eigenvector encoding xi = VT
n ei as stated

in (8). Since there are a total of c words in our corpus, there are a total of
c vectors xi that represent valid words. The vectors at the output of the
transformer are most unlikely to be one of these vectors and the estimate
x̂T in (17) is just as unlikely unless we manage to drive the train and test
MSEs to zero.

To solve this problem we must force the readout to be a valid word. We
do that with readout layer whose output is a vector of ñ probabilities for
each of the ñ words in the corpus. This readout layer is a softmax applied
to the output of a fully connected layer that acts on the output of the
transformer at time T − 1,

π(X) = sm
[

A
(

Φ(X,A)
)

T−1

]
. (19)

The matrix A is a trainable parameter with n columns and c rows. After
applying the softmax normalization the entries of the output π(X) add

11

up to one and can be interpreted as as set of probabilities that dictate the
likelihood of the next word in the sequence. The ith entry πi(X) is the
predicted probability that the next word is ei.

We refer to the probabilities in (19) as a policy. To train this policy we
minimize the crossentropy loss between the true word at time u + T and
the probabilities π(X),

A∗, A∗ = argmin
A, A

1
C

C−1

∑
u=0

(
eu+T

)T(log π(Xu)
)
. (20)

Notice that in (20) the vector eu+T is the index encoding of the word at
time u + T. This is a vector with all zeros except that it has a 1 at the
entry that corresponds to the index of the word that is observed at time
u + T. Is is therefore a valid probability index that we can incorporate
into a crossentropy comparison.

Further notice that the optimization is joint over the trainable parameters
A of the transformer and the readout matrix A. These two parameters are
implicit in (20). They appear because π(Xu) depends on A and A. In the
hope that it is revealing to make this dependance explicit we instantiate
X = Xu in (19) and substitute the result in (20) to write

A∗, A∗ = argmin
A, A

1
C

C−1

∑
u=0

[
eu+T

]T
[

log sm
[

A vec
(

Φ(Xu,A)
)]]

. (21)

We solve this empirical risk minimization (ERM) problem to predict the
next word in a sequence of text. This prediction is based on observing a
history of length T that is processed by a transformer [cf. (13)-(15)] with a
probability readout layer [cf. (19)]. Different from the readout strategy in
(17) and the training procedure in (18), the ERM problem in (21) produces
parameters A∗ and A∗ that map directly to predictions of actual words

Task 6 Modify the transformer of Task 4 to add the readout layer in (19).

Task 7 Split the corpuses loaded in Task 1 and Task 3 into a training set
containing 90% of the total number of words and a test set containing
10% of the words. Recall that these two are equivalent time series except
that the information is encoded differently. In Task 1 we store words
using index encodings and in Task 3 we store words using eigenvector

12

embeddings. We are loading both here because the eigenvector encodings
are the input to the transformer and the index encodings are needed for
the crossentropy comparison in (21). Make sure that time indexes match
in your data.

Use the training set to train a transformer that predicts next word proba-
bilities using the transformer with readout of Task 6. Use T = 64 for the
length of the history Xu. Transformer parameters are your choice. If you
need a recommendation, use L = 6 H = 8 and m = 32.

Evaluate the crossentropy loss in the test set and compare it to the crossen-
tropy loss in the training set.

4.2 Model Sampling

After solving the ERM problem in (21) we have trained values A∗ for the
transformer and A∗ for the probability readout layer. With these trained
values we can execute (19) for any given text sequence X of length T. The
result is the (optimal) vector of probabilities

π∗(X) = sm
[

A∗ vec
(
Φ(X,A∗)

)]
. (22)

This is not yet a word. It is a vector of probabilities that assigns probabil-
ities to each of the c words in the corpus. To generate a word we need to
implement a sampling strategy.

Let us denote as π∗(ei|X) the probability of choosing word ei. This is the
ith entry of the vector of probabilities π. A possible sampling strategy is
to sample the word ei with the highest probability,

ê = argmax
ei

π∗(ei|X) (23)

Alternatively, we can sample predictions randomly by choosing different
words according to their corresponding probabilities. We write

ê = ei ∼ π∗(ei|X) (24)

to signify that we choose ê = ei with probability π∗(ei|X).

Sampling according to the largest probability [cf. (23)] is a good strategy
if we want to actually predict the next word in the sequence. Sampling

13

randomly according to word probabilities [cf (24)] is a better strategy for
generating text. Random sampling is a better imitation of the natural
variability of human language. We will use random sampling.

Task 8 Given trained parameters A∗ and A∗ implement: (a) A trans-
former with parameters A∗ that takes language sequences X of length T
as inputs. (b) A readout layer that postprocesses the output of the trans-
former to yield a vector of probabilities π∗(X). (c) A sampler that takes
probabilities π∗(X) as inputs and returns words ê sampled according to
(24).

The transformer and readout implementations are just instances of the
transformer and readout modules of Tasks 4 and Task 6. The only new
piece here is the sampler.

Try your sampler for a few input sequences.

5 Language Generation

In Section 4 we adopted a transformer to predict the next word of a se-
quence of length T. We adapt this model to language generation with a
rolling execution.

Begin with a language sequence entered by a user, which we call a prompt.
From the prompt we construct a time series X0 with the eigenvector en-
codings of its words

X0 = [x0, . . . , xT−1]. (25)

We assume, for simplicity, that this prompt has length T. Using this
prompt we predict the next word in the sequence using the policy π∗,

xT ∼ π∗(X0). (26)

Although the input xT has been generated by the policy π∗, we reinterpret
it as a given word. We then roll the prompt backward and append the
generated word xT to construct the series

X1 = [x1, . . . , xT−1, xT]. (27)

14

In this sequence the first T − 1 entries are part of the user prompt. The
last one, xT , has been generated. We ignore this distinction and proceed
to estimate word T + 1 as

xT+1 ∼ π∗(X1) (28)

We then proceed to append this generated word to the time series in (27)
and roll the series backward. This procedure yields the time series,

X2 = [x2, . . . , xT−1, xT , xT+1] (29)

In this time series we have the last T − 2 words of the user prompt and
two words that have been generated by policy π∗. These are the words
xT and xT+1 generated in (26) and (28). We, again, ignore this distinction
and generate the next word as,

xT+2 ∼ π∗(X2) (30)

We append word xT+2 to the time series, roll the time series backwards,
and use the updated series to predict the next word in the sequence. In
general, at generative step u we take as an input the time series

Xu = [xu, . . . , xT−1+u], (31)

in which the last u samples have been generated – it can be that all of the
samples are generated if u ≥ T. From this time series we generate the
word in position T + u as,

xT+u ∼ π∗(Xu). (32)

The output of the generative language model the string of text [xT , . . . , xTmax]
where Tmax is a prespecified limit for the length of the language sequence
to be generated. Of course, rather than returning the eigenvector embed-
dings [xT , . . . , xTmax] we return the sequence of corresponding words.

Task 9 Implement the generative language model as specified by the re-
cursion (31)-(32). Take prompts of length T = 64 as inputs and generate
language sequences of length Tmax = 500.

Try your generative model for some prompts.

15

6 Positional Encoding

The output of a transformer is equivariant to a permutation of the entries
of the time series. If we exchange the positions of xt and xu the output
of the transformer is the the same except that the corresponding outputs
of the transformer also exchange places. To be precise, let Q be a permu-
tation matrix that exchanges the position of xt and xu in the time series
X. Then, the time series X and X × Q are the same except for a switch of
places between xt and xu and the outputs of the transformer satisfy

Φ
(

X × Q,A
)

= Φ
(

X,A
)
× Q. (33)

I.e., the transformer outputs are the same except that [Φ(X,A)]t and
[Φ(X,A)]u exchange places. The relationship in (35) is true not only for a
exchange of places between entries but for any permutation matrix Q.

Positional encoding is a strategy to break permutation symmetry so that
words can have different effects depending on their positions. To that
end we define the positional encoding time series P ∈ Rn×T and it to the
input time series,

X̃ = X + P. (34)

The entries pt of the positional encoding series P are independent of the
input times series X and depend solely on their time index t. Thus, the
time series X̃ modifies the input data X to codify the position of the dif-
ferent entries of the time series.

This breaks the permutation equivariance of the transformer. If we ex-
change the positions of xt and xu the outputs of the transformer are not
necessarily the same because the positional encodings pt and pu do not
exchange places. I.e., in general,

Φ
(

X × Q + P,A
)

̸≡ Φ
(

X × Q,A
)
× Q. (35)

The symmetry breaks the input time series X is permuted but the posi-
tional enccoding series P is not.

16

6.1 Learnable and Designed Positional Encodings

There are two standard approaches to positional encoding in language
models. The first approach is to make P a learnable parameter.

Alternatively, we can use oscillations to design positional encodings. For
a time series made up of vectors xt with n entries we define n/2 frequen-
cies αi. For each of these frequencies we define a times series P in which
the values for time t and index i are given by

pti = cos
(

2π α(i+1)/2 (t/T)
)

, i odd,

pti = sin
(

2π αi/2 (t/T)
)

, i even. (36)

As per (36), positional encoding includes sines and cosines of different
frequencies in different rows of the positional encoding time series. Odd
rows of P are cosines of frequency α(i+1)/2. Even rows of P are sines of
frequency αi/2. The use of sines and cosines in (36) is motivated by the
Fourier basis, which has intimate connections with convolution. This is a
story for another day.

The positional encoding in (36) is the most common in language models.
Learned positional encodings are simpler and not ineffective.

Task 10 Modify the transformer of Task 6 to incorporate positional en-
coding. Implement the positional encoding P as a learnable parameter.

7 Practical Considerations

The transformer in Task 10 contains all of the fundamental aspects of a
language model. It includes a word embedding to translate words into
meaningful numerical representations (Section 2), a transformer to pro-
cess the embedded sequence (Section 3), and a readout layer that takes the
output of the transformer and produces a probabilistic policy (Section 4).
To these three components we add positional encoding to break permu-
tation symmetry and allow words to have different effects on the output
depending on their position in the prompt (Section 6). This transformer

17

can be trained and then used to generate language sequences using the
method in Section 5. The results are middling.

We describe here two small modifications that improve performance fur-
ther. They are layer normalization (Section 7.1) and future masking (Sec-
tion 7.2).

7.1 Layer Normalization

In order to improve training stability and convergence, one common im-
plementation trick is to normalize the output vectors of a layer to have
zero mean and unit variance. This is commonly referred to as layer nor-
malization. To simplify notation let X stand in for the output of Layer ℓ.
The normalized output X̂ of layer ℓ is computed as:

X̂ti = γt ·
Xti − µt√

σ2
t + ϵ

+ βt (37)

Here, ϵ > 0 is a small number to avoid dividing by zero, µ and σ2 are the
row-wise mean and variance of the elements Xij at layer ℓ:

µt =
1
n

n

∑
i=1

Xti (38)

σ2
t =

1
n

n

∑
i=1

(Xti − µt)
2 (39)

The learnable parameters γi and βi play the role of recovering the mean
and the variance. This might seem like we didn’t do anything, but now
the learnable parameters do not depend on the computation of X. This
results in more stable training. By normalizing each hidden vector, layer
normalization helps to mitigate internal covariate shift and ensures more
stable gradients during training.

Task 11 Modify the transformer of Task 10 to incorporate layer normal-
ization. We will normalize in three places: before the attention computa-
tion in (13), before the nonlinearity in (15), and before the final readout.
Use the PyTorch function nn.LayerNorm.

18

7.2 Future Masking

In Equation (13), we have attention coefficients for each pair of words in a
sequence. This means that our model can learn to have Atu with nonzero
attention even if the word wt is ahead of the word wu. This is undesirable
for word generation as it is reasonable that attention coefficients should
focus on past words only. This is a better match to the goal of predicting
the next word in a sequence. We use future masking to ensure this.

Recall then the definition of the attention matrix in (13) and write it as
A to simplify notation. The tth rows of the attention matrix at contains
the attention coefficients for time index t. We want to modify attention so
that the weight is zero for all the words beyond t,

at = [at0, at1, . . . , att, 0, . . . , 0]. (40)

To accomplish this recall the definition of the linear attention matrix

B = (QX)T(KX) (41)

The softmax of bt, Row t of the matrix B, is our standard definition of the
attention coefficient at. To obtain an attention coefficient with the form in
(40) we compute the softmax over the first t entries of bt only,

at =
[

sm
([

bt0, bt1, . . . , btt
])

, 0, . . . , 0
]
. (42)

The attention coefficients in (42) add up to one and have zero mass on
times u > t.

Task 12 Modify the transformer of Task 11 to incorporate future masking
in the attention layers.

Task 13 Repeat the training in Task 7 using the transformer in Task 12.

Task 14 Repeat the generative exercise in Task 9 using the transformer
trained in Task 13.

19

8 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Word histogram

Task 2 Do not report

Task 3 Do not report

Task 4 Do not report

Task 5 Train and test MSE. Paragraph explaining
why word predictions are not good

Task 6 Do not report

Task 7 Train and test cross entropy losses

Task 8 Three examples of your favorite pairs of se-
quences and predictions. You will get 0
points in the lab if you report our pairs.

Task 9 One example of your favorite generated se-
quence. You will get 0 points in the lab if you
report our sequence.

Task 10 Do not report

Task 11 Do not report

Task 12 Do not report

Task 13 Train and test cross entropy losses

Task 14 One example of your favorite generated se-
quence. You will get 0 points in the lab if you
report our sequence.

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 8 points total.

20

	Language Sequences
	Word Embeddings
	Cooccurrence Matrices
	Eigenvector Embeddings
	Principal Component Analysis

	Language Transformers
	Next Word Prediction
	Probability Readout
	Model Sampling

	Language Generation
	Positional Encoding
	Learnable and Designed Positional Encodings

	Practical Considerations
	Layer Normalization
	Future Masking

	Report

