
Lab 5: Time Series and Transformers

Javier Porras-Valenzuela and Alejandro Ribeiro*

October 15, 2024

1 Time Series

We define a time series X as a collection of T + 1 vectors xt ∈ Rn indexed
by a time index t = 0, 1, . . . T. There are several tasks that we may want to
perform in a time series, but the prototypical example is the prediction of
the entry xT at time T when given the history of the series between times
0 and T − 1,

XT = x0:T−1 =
[

x0, x1, . . . , xT−1
]
. (1)

This task is illustrated in Figure 1 for T = 10. The time series is observed
between times t = 0 and t = T − 1 = 9. The value at time T = 10 is
unobserved. Our goal is to predict it.

This is a goal that we can formulate as a machine learning task. Given
the history of the time series between times 0 and T − 1, we introduce
a learning parameterization H to produce estimates of the time series at
time T,

x̂T = Φ
(

XT , H
)
. (2)

These estimates can be compared to the true value of the time series xT
to formulate a training cost that we then optimize to find the optimal set
of parameters. That is, we go through the usual steps of: (i) Acquiring
data for several time series. This yields a set of U histories Xu and cor-
responding time T values xuT . (ii) Introducing a loss function ℓ(x̂T , xT)

*In alphabetical order.

1

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Figure 1. Time Series Prediction. A time series is a collection of T + 1 vectors
xt ∈ Rn indexed by a time index t. The prototypical task in time series is the
prediction of the entry at time T when given the history of the series between
times t = 0 and t = T − 1. In the figure, T = 10 and we want to predict the
unobserved value of xT = x10 based on the observed values of x0:T−1 = x0:9.

measuring the fit between the time series value xT and its prediction x̂T .
(iii) Formulating the empirical risk minimization (ERM) problem,

H∗ = argmin
H

1
U

U−1

∑
u=0

ℓ
(

Φ
(

XuT , H
)
, xuT

)
. (3)

In (3), the index u denotes several different time series. This is not quite
how time series work. In reality, we are given a single time series that
extends for T +U units of time and the “different” time series are actually
different windows of the same time series,

XuT = xu:u+T−1 =
[

xu, xu+1, . . . , xu+T−1
]
, xuT = xu+T . (4)

Thus, out of a single time series we extract a number of training samples
that consider time u as the starting point of a new sequence of length T
out of which we want to predict the value of the sequence at time u + T.
Our first task is to construct the dataset in (4) when given a time series.

Task 1 In this lab we work with weather data. We are given a time series
with T + U = 52, 696 entries each of which has various descriptors of the
weather at different times of different days. The entries in the time series
are twelve weather indicators such as humidity, atmospheric pressure,
and temperature.

Load the data from the lab’s page and plot component “T (degC)” of the
time series as a function of time. This is the average temperature during
each time interval.

2

xtxt−1xt−T

Figure 2. Time Series Prediction. It is more common to define time series as sets
of vectors xt ∈ Rn that extend to infinity. In this context the prediction problem
illustrated in Figure 1 morphs into the problem of estimating xt given a window
of T previous values Xt = xt−T:t−1. They are mathematically equivalent problems.

Separate this time series into two parts. The first part contains 70% of the
values and the second part contains the remaining 30%. Use these two
time series to extract U = 36, 787 samples of the form in (4) for a training
set and to extract U = 15, 709 samples of the form in (4) for a test set. In
both cases, use T = 100.

1.1 A More Precise Definition of Time Series

We begun Section 1 describing time series as a collection of T + 1 vectors
xt ∈ Rn. A more common definition of a time series is that of a set of vec-
tors xt ∈ Rn that extends from time t = 0 to infinity. At any point in time
t our goal is to predict the value of xt given the whole process’s history
x0:t−1. In practice, values in the distant past are considered irrelevant for
the estimation of xt. We therefore introduce a window of length T and
consider the history of the time series starting at time t − T. Formally, we
define the windowed history

Xt = xt−T:t−1 =
[

xt−T , xt−T+1, . . . , xt−1
]
, (5)

and consider a learning parameterization that maps Xt to predictions

x̂t = Φ
(

Xt, H
)
. (6)

This is an equivalent description of the history and parameterization in
(1) and (2). It is just that instead of starting at time t = 0 to predict at time
T as in (1) and (2) we start at arbitrary time t to predict at time t + T.

3

xt

Q Qxt

Btu

Kxu K

xu

Figure 3. Attention. For vectors xt and xu we compute attention coefficient Btu to
measure their similarity. To compute these similarities the vector xt is multiplied
by the query matrix Q and the vector xu is multiplied by the key matrix K. The
attention coefficient Btu is the inner products between queries Qxt and keys Kxu.

This more accurate description of a time series is important during exe-
cution. The trained model Φ(X,H∗) is executed on a rolling basis. At any
time t we make predictions by executing the model Φ(Xt,H∗) with the
history window Xt as defined in (5). After observing xt – at which point
the problem of predicting xt becomes moot – we advance time to t + 1,
update the history window and execute the model Φ(Xt+1,H∗) to make
a prediction of the value of the time series at time t + 1.

Henceforth, we work with the definition of a time series as a sequence
of T vectors X = x0:T−1 with the goal of predicting xT . There are less
indexes involved and the notation is less cumbersome. But we keep in
mind that out trained models are to be executed on a rolling basis on an
indefinite time series.

2 Attention Layers

Attention layers create representations of the entries xt of a time series
X = [x0, . . . , xT] that depend on context. This is done by constructing
vectors yt that are linear combinations of all of the entries of the time
series weighted by importance coefficients. I.e., for a certain matrix M

4

Xxt

KQ

KXQxt

(Qxt)T(KX) = bt

Figure 4. Attention vectors. For a given vector xt, we compute a vector of attention
coefficients bt. These coefficients measure the similarity between xt and all other
vectors in the time series. To compute these similarities the vector xt is multiplied
by the query matrix Q and the series X is multiplied by the key matrix K. The
attention vector bt is the inner product between the query Qxt and the keys Kxu.

and similarity function d(·, ·), we compute the vector

yt =
T

∑
u=0

d(xt, xu)Mxu. (7)

The collection of vectors yt forms another time series Y = [y0, . . . , yT].
The construction of the time series Y is such that its entries yt depend on
all other entries of the time series. For this reason we call it a contextual
representation. The purpose of the importance coefficients d(xt, xu) is for
the representation yt to be most affected by the time series vectors xu that
are deemed most relevant to xt.

The importance coefficients d(xt, xu) are called attention coefficients.

5

2.1 Attention Coefficients

To accomplish this we rely on the attention coefficients

Btu = ⟨Qxt, Kxu⟩ = (Qxt)
T(Kxu). (8)

Attention is just a way of measuring the similarity between the compo-
nents xt and xu of the time series. Indeed, if we make Q = K = I the
attention coefficient reduces to the inner product between the time series’s
components, Btu = ⟨xt, xu⟩. This inner product is a standard measure of
similarity between vectors.

The incorporation of Q and K in (8) introduces learnable coefficients that
may yield more relevant measures of similarity. The matrices Q and K
have n columns – which is the number of entries of each of the time series
vectors xt – and m rows. In general, m ≪ n because we know that inner
products are more meaningful in low dimensional spaces.

The coefficients Btu can be arranged into row vectors bt that include all of
the attention coefficients associated with time t. It follows from (8) and
the definition of the time series matrix X = [x0, . . . , xT] that this vector of
attention coefficients can be computed as

bt = (Qxt)
T(KX). (9)

The computation of the attention vector bt is represented in Figure 4. We
begin with the time series represented in its matrix form X and isolate a
specific time index t. This is the vector xt in Figure 4. To compute atten-
tion coefficients we multiply xt by the query matrix Q. This multiplication
yields the query vectors Qxt for this particular component of the time
series. In parallel, each of the vectors xu of the time series is multiplied
by the key matrix K. This results in the calculation of the key vectors Kxu
which are the columns of the key matrix KX. Although not required, the
number of rows of the query and key vectors are (much) smaller than the
number of rows of the time series. The attention coefficients in (8) are the
result of computing the inner product between the query vector and the
key matrix.

The attention coefficients in (8) can be further grouped into an attention
matrix B. Operating from the definition of the attention vectors in (9) we
can see that this matrix is given by

B = (QX)T(KX). (10)

6

This computation is illustrated in Figure 5. The time series matrix X is
multiplied by the query matrix Q and the key matrix K. These multipli-
cations result in the computation of the queries QX and the keys KX. The
attention matrix B is the outer product (QX)T(KX) between queries and
keys.

Notice that there are a large number of attention coefficients but they are
generated by a relatively small number of parameters. Indeed, there are
at total of (T + 1)2 attention coefficients when we operate with a time
series with T + 1 vectors. However, the query and key matrices have
m × n coefficients.

As is the case with convolutions in time, graphs, and images, the matrix
expression in (10) is the one that we use for implementations. The scalar
and vector expressions in (8) and (9) are valuable to understand attention
but not used in implementations.

Task 2 Implement a Pytorch module for the similarity operation in (10).
The query and key matrices are attributes of this class. The forward
method should compute the attention matrix B.

2.2 Nonlinear Attention

The similarity coefficients in (8) are what we call a linear attention mech-
anism. Nonlinear attention mechanisms post process linear attention co-
efficients with a nonlinear function.

The most common choice of nonlinearity is a function we call a softmax.
For a given vector b ∈ RT+1 the softmax is the vector, a = sm(b) with
components,

au =
exp(bu)

∑T+1
u′=1 exp(bu′)

⇔ sm(a) =
exp(b)

1T exp(b)
, (11)

where in the second equality we define the vector of exponentials exp(b) :=
[exp(b0); . . . ; exp(bT) and the vector of all ones 1 := [1; . . . ; 1]. As per
(11), the softmax entry au is the ratio between the exponential exp(bu) of
Component u of the vector b normalized to the sum of the exponentials
exp(bu′) of all components of b. We point out that the definition is simi-

7

X

Q K

KX

(QX)T

A

Figure 5. Attention Matrix. The time series matrix X is multiplied by the query
matrix Q and the key matrix K. These multiplications result in the computation
of the queries QX and the keys KX. The attention matrix B is the outer product
(QX)T(KX) between queries and keys. There are a large number of attention
coefficients but they are generated by a small number of parameters.

8

lar but not identical to the definition of the softmax function we used to
introduce the cross entropy loss In Lab 2C.

With this definition we can now define softmax similarity coefficients as
the application of the softmax function in (11) to the linear similarity
vector in (9).

at = sm
(

bt

)
= sm

(
(Qxt)

T(Kxu)
)

=
exp

(
(Qxt)T(KX)

)
1T exp

(
(Qxt)T(KX)

) .

(12)

Observe that the definition of the softmax in (11) is such that the sum of
the entries of the softmax vector is normalized to, 1Tsm(a) = 1. As a
particular case, the sum of the similarity coefficients at in (12) is 1Tat =
1. We can then think of the softmax similarity coefficients in (12) as a
nonlinear normalization of the attention coefficients in (9).

This observation is important because it makes it plain that (12) is similar
to a pointwise nonlinearity. Indeed, if we use Atu to denote the entries of
at, it follows from the definitions in (8), (9) and (12) that

Atu =
exp(Btu)

∑T+1
u′=1 exp(Btu)

(13)

Thus, the similarity coefficient Atu is obtained by applying an exponential
pointwise nonlinearity to the linear similarity coefficient Btu followed by a
normalization. The purpose of the exponential nonlinearity is to magnify
the difference between different similarity coefficients.

Similarly to (10), we can group all attention coefficients into a matrix

A = sm
(
(QX)T(KX)

)
, (14)

where the softmax function implements normalizing along the rows of
(QX)T(KX). I.e., the rows of the similarity matrix A are the vectors at
defined in (12).

Task 3 Implement a Pytorch module for the similarity operation in (14).
The query and key matrices are attributes of this class. The forward
method should compute the attention matrix A.

9

X

V

VX

at

zt = VXaT
t

Figure 6. Contextual Representations of Reduced Dimension. Contextual repre-
sentations are created by multiplying the time series matrix by a matrix V with m
rows and n columns. Since m ≪ n, this creates a representation VX of the time
series in a lower dimensional space. Each of the vectors in VX is multiplied by
the attention coefficient Atu [cf. (12)-(14)]. The sum of the result over all u is the
contextual representation zt of dimension m.

2.3 Contextual Representations

The similarity coefficients in (12)-(14) are used to create a contextual rep-
resentation of xt,

zt =
T

∑
u=0

(Vxu)Atu (15)

This contextual representation is a linear combination of all the vectors in
the time series multiplied by a matrix V and scaled by the similarity coef-
ficients Atu. The matrix V ∈ Rm×n is a projection in a lower dimensional
space. The dimensions of V are the same as the dimensions of Q and K.

It is ready to see that the the expression in (15) is equivalent to

zt = VXaT
t . (16)

This operation is explained in Figure 6. The time series X is multiplied

10

X

V

VX

A

VXAT = Z

Figure 7. Contextual Representations of Reduced Dimension. Operations in Fig-
ure 6 shown in matrix form. The product VX represents the time series in a space
of lower dimension m ≪ n. Multiplication on the right with the attention matrix
AT produces the contextual representation of the time series, Z ∈ Rm.

11

by the value matrix V. This produces an alternative representation of
the time series given by the product VX. This representation is of lower
dimensionality. Instead of having vectors xu ∈ Rn associated with each
point in time u we have vectors Vxu ∈ Rm. We choose m ≪ n. The low
dimensional contextual representation zt is obtained by weighting each
vector Vxu by the attention coefficient Atu and summing over all times
u. Equivalently, we obtain zt as the product VXaT

t shown in (16). We say
that this representation is contextual because zt depends on vectors xu
that have deemed similar to xt by the attention coefficient Atu.

The operation in (16) can also be represented in matrix form. The matrix
Z with columns zt is given by

Z = VXAT (17)

This operation is represented in Figure 7. The top part of Figure 7 is the
same as the top part of Figure 6. We are constructing a lower dimensional
representation VX of the time series. We then produce the contextual
representation Z by multiplying VX with the attention matrix transpose
AT .

The representations in (17) are of dimension m ≪ n. We complete an
attention layer with a dimensional recovery step. This is done by multi-
plication with the transpose of a matrix W ∈ Rm×n. We can write this
operation in terms of individual contextual vectors zt,

yt = WTzt = WTVXaT
t . (18)

or in terms of the matrix Z with all of the contextual vectors

Y = WTZ = WTVXAT (19)

The vectors yt are contextual representations of the time series that have
same dimensionality as the components of the time series. The operations
in (18) and (19) are illustrated in Figures 8 and 9.

The representation Y is the output of an attention layer.

2.4 Softmax Attention Layers

As it follows from the discussions in Sections 2.2 and 2.3 a softmax atten-
tion layer has two distinct operations. The first operation is the computa-

12

zt W

yt= WTzt

Figure 8. Contextual Representations of Original Dimension. We recover repre-
sentations with the same initial dimension by multiplying the representation of
reduced dimensionality by the transposed matrix WT . The vector yt is the output
of the attention layer. It is a linear combination of all the vectors in the time series
weighted by their relevance to time t entry [cf. (18)].

tion of the softmax attention coefficients,

A = sm
(
(QX)T(KX)

)
. (20)

This is Equation (14) repeated here for reference. The second operation is
the computation of the contextual representation,

Y = WT V X AT = WT V X
[

sm
(
(Q X)T(K X)

)]T
. (21)

This is Equation (19) repeated here for reference.

The parameters of the attention layer are the matrices Q, K, V and W.
All of these matrices have m rows and n columns with m ≪ n. Having
intermediate representations of smaller dimension is important.

The expressions in (14) and (21) are what you should use to implement
and analyze attention layers. However, it is sometimes instructive to keep
in mind the definition of the attention vectors

at = sm
(
(Qxt)

T(Kxu)
)

, (22)

and the expanded expression for the computation of the contextual rep-
resentation

yt = WT
T

∑
u=0

AtuVxu. (23)

13

Z

W

Y = WTZ

Figure 9. Contextual Representations of Original Dimension. Operations in Fig-
ure 8 shown in matrix form. The reduced dimensionality contextual representa-
tion Z is multiplied by the transposed matrix WT [cf. (19)]. This is the output of
the attention layer.

Equation (22) is a repetition of (12) and equation (23) is a combination of
(18) and (15). Notice that the expression in (23) has the same form of the
conceptual expression in (7) with d(xt, xu) = Atu and M = WTV.

Task 4 Code a Pytorch module that implements an attention layer. The
matrices Q, K, V and W are parameters of this module. The forward
method of this module takes a time series X as an input and produces the
time series Y as an output. The module receives m and n as initialization
parameters.

It is common to postprocess the contextual representation further, but to
do so without further mixing of different time components. The simplest
we can do is add a pointwise nonlinearity to (21) so that the output is

Yσ = σ
(

Y
)

= σ
(

WTVXAT
)

. (24)

It is also not uncommon to postprocess each yt with a fully connected
neural network (FCNN). This is not unwise because the dimensionality
of yt is not too large and we will use the same FCNN for all times t. We
will not do this here.

14

Task 5 Modify the module of Task 4 to include a pointwise nonlinear
operation. You can choose your favorite nonlinearity here, but we suggest
you implement a relu.

3 Transformers

A transformer is a layered architecture where each layer is an attention
layer. Formally, this is a composition of operations defined by the recur-
sion

Aℓ = sm
(
(QℓXℓ−1)

T(KℓXℓ−1)
)

, (25)

Yℓ = WT
ℓ Vℓ Xℓ−1 AT

ℓ , (26)

Xℓ = σ
(

Yℓ

)
. (27)

This recursion is initialed with X0 = X and is repeated L times, where
L is the number of layers of the transformer. This is analogous to the
composition of layers in convolutional and graph neural networks.

For future reference, define the tensor A = [Qℓ, Kℓ, Vℓ, Wℓ] grouping the
query, key, value, and dimension recovery matrices of all layers. With this
definition we write the output of a transformer as

Φ(X,A) = YL (28)

In (28), X is the time series that we input to the transformer and A is
the trainable parameter. The output Φ(X,A) is another time series with
the same number of time components T + 1 and vectors with the same
dimension n. The vectors yt are representations of time t that depend on
the context of the whole time series.

Task 6 Code a Pytorch module to implement a Transformer as specified
by (25)-(27). This implementation can leverage the implementation of the
attention layer in Task 5.

15

4 Time Series Prediction

We use a transformer to predict the next entry of a time series; Section 1.
To do so observe that the output of the transformer Y is an n × (T + 1)
matrix representing the time series X which is also an n × (T + 1) matrix.
This is mismatched to a problem in which the input is a time series with
T components [x0, . . . , xT−1] and the output is a prediction x̂T of the value
at time T. To sort out this mismatch consider the average x̄ = X1/T of
the time series values and define the input of the transformer as the time
series

X̃ =
[

X, x̄
]
. (29)

In the time series X̃t we append the mean x̄ to the given time series Xt.
The idea is that x̄ is a naive prediction of the time series entry for time
T + 1.

We can now use a transformer to refine this estimate. We do that by
reading the transformer output at time T + 1 and declaring it to be our
estimate of the weather data,

x̂T =
[

Φ(X̃,A)
]

T
. (30)

An alternative approach is to process the time series X without append-
ing the naive estimate x̄. This gives as an output a time series with T
components. In this case we declare that the estimate x̂T is the average of
the outputs of the transformer for all times,

x̂T =
[

Φ(X,A)
]
1. (31)

Notice that (29)-(30) and (31) are similar approaches. In (29)-(30) we com-
pute an average before running the transformer and in (31) we compute
an average after running the transformer.

Task 7 Use the data in Task 1 to train a transformer for weather predic-
tion. You can choose either of the approaches in (29)-(30) or (31). The
parameters of the transformer are your choice. We suggest that you use
L = 3 layers and m = 3 for your intermediate representations. Use a
mean squared loss and evaluate train and test performance.

16

5 Multihead Attention

As we did with CNNs and GNNs we also incorporate multiple features.
Features in transformers are called heads

Ah
ℓ = sm

(
(QℓXℓ−1)

T(KℓXℓ−1)
)

, (32)

Yh
ℓ = WT

ℓ Vℓ Xℓ−1 Ah
ℓ

T
, (33)

Xℓ = σ

(H

∑
h=1

Yh
ℓ

)
. (34)

A (minor) difference between multihead transformers and neural net-
works with multiple features is that the outputs of attention layers always
have a single feature. The multiple features Yh

ℓ generated by different
heads are added at the output of each layer to produce the layer’s output
Xℓ.

Task 8 Code a Pytorch module to implement a multihead transformer as
specified by (32)-(34). This implementation can leverage the implementa-
tion of the attention layer in Task 5.

Task 9 Use the data in Task 1 to train a multihead transformer for weather
prediction. You can choose either of the approaches in (29)-(30) or (31).
The parameters of the transformer are your choice. We suggest that you
use L = 3 layers, m = 3 for your intermediate representations, and H = 4
for the number of heads. Use a mean squared loss and evaluate train and
test performance.

17

6 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Do not report

Task 2 Do not report

Task 3 Do not report

Task 4 Do not report

Task 5 Do not report

Task 6 Do not report

Task 7 Train MSE and Test MSE

Task 8 Do not report

Task 9 Train MSE and Test MSE

Number of images in the train and test set. Training loss Test loss

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 8 points total.

18

	Time Series
	A More Precise Definition of Time Series

	Attention Layers
	Attention Coefficients
	Nonlinear Attention
	Contextual Representations
	Softmax Attention Layers

	Transformers
	Time Series Prediction
	Multihead Attention
	Report

