
Lab 7: Generative Diffusion Models

Shervin Khalafi and Alejandro Ribeiro*

October 28, 2024

1 Data Probability Distributions

In several of the past chapters we have discussed the difference between
the data on which a model is trained and the data on which a model is
executed. We have emphasized that these two sets are different but we
have not discussed much how they are related. Their relationship is that
both of them are sampled from a common probability distribution.

A probability distribution p(x) is a function that assigns values to the
likelihood of observing different possible outcomes x. The likelihood is
large for signals that are likely and small for signals that are unlikely. As
an example, consider a bag that contains all of the possible digits that
have, are, or will ever be written. The first image in Figure 1 has a high
likelihood as it is a fairly typical handwritten number five. The second
image has a smaller likelihood. It is a discernible number five, but not a
typical one. The third image has negligible likelihood, maybe even zero
likelihood, because it does not look like a digit.

It is convened that likelihoods are normalized so that they integrate to 1,∫
p(x) dx = 1. (1)

The meaning of this normalization is that when we put our hand in the
bag we extract one and only one digit. Thus, the sum (integral) of all
likelihoods must be exactly one.

*In alphabetical order.

1

Figure 1. Probability Distributions. A probability distribution p(x) is a function
that assigns values to the likelihood of observing different possible outcomes x.
In the bag that contains all of the digits that have, are, or will ever be written the
first image has high likelihood, the second one intermediate likelihood and the
third one small likelihood.

When we train an AI model it is implicit that training samples are ex-
tracted from an underlying probability distribution p(x) which is the
same distribution from which future samples will be extracted. In digit
classification we pull handwritten digits from the bag of all digits that
have, are, or will ever be written. We use this digits to train a CNN that
we will then execute on any digits that are extracted from this same bag.

In this chapter we are after a more ambitious AI task than in previous
chapters. We want to train an AI system that replicates the probability
distribution itself. We are not just after classifying digits pulled from
the bag of all digits that have, are, or will ever be written. We want to
create an artificial bag from where we can pull digits with a distribution
of likelihoods equivalent to the distribution of likelihoods of the natural
system.

This is the most ambitious AI task we can conceive. If we succeed, we
can prescind of reality altogether. Tackling this task requires that we
understand distributions a little better and that we tackle the difference
between statistical and empirical risk. We do that in the following before
discussing generative models in Section 7.

2

−σ1 σ1 µ2µ2 − σ2 µ2 + σ2 µ3µ3 − σ3 µ3 + σ3
x

p1(x), p2(y), p3(y)

Figure 2. Gaussian (Normal) Probability Distributions in 1 Dimension. Normal
distributions have bell shapes and are determined by two parameters, the mean
µ and the variance σ2. The mean is the value with the highest likelihood and the
variance is the spread of the likelihood around the mean.

2 Gaussian Distributions

A Gaussian probability distribution with mean µ and variance σ2 is a
probability distribution over scalar values x; see Figure 2. This probability
distribution has the formula

p(x) =
1√
2πσ

exp
[
− (x − µ2)

2σ2

]
. (2)

All Gaussian distributions look like crosssections of a bell. The mean µ
determines the center of the bell and the variance σ2 the concentration of
the bell around its mean. Smaller variances imply larger concentrations.
Gaussian distributions are also called normal distributions.

In Figure 2 the probability distribution p1(x) is normal and has mean
µ = 0 and variance σ2 = 1. We see in the figure that values around
x = µ = 0 are the most likely to be observed, that values around x and
−x are equally likely, and that values much larger that x = 3σ = 3 are
unlikely. Distribution p2(x) in Figure 2 has mean µ = 4 and variance
σ2 = 1. It has the same shape of distribution p1(x) but is shifted to
the right. This is because they have the same variance while the mean
is of p2(x) is higher. Distribution p3(x) has mean µ = 8 and variance
σ2 = 1/4. In addition to been further shifted to the right, distribution
p3(x) is more concentrated around its mean. This is because its variance
is smaller than the variance of p1(x) and p2(x).

3

2.1 Multivariate Gaussian Distributions

Our interest extends to probability distributions across vectors x ∈ Rn. In
this case we define a vector of means µ ∈ Rn and a covariance matrix C ∈
Rn×n. A multivariate Gaussian probability distribution assigns likelihoods
to samples according to the formula,

p(x) =
1

(2π)n/2 det1/2(C)
exp

[
−1

2
(x − µ)TC(x − µ)

]
= N

(
x; µ, C

)
.

(3)
In this formula det1/2(C) is the square root of the determinant of the co-
variance matrix and the product (x − µ)TC(x − µ) evaluates to a number
that we exponentiate. The matrix C = CT is symmetric.

However complicated, the formula for the normal distribution is just a
formula. To save the time of writing (3), we use the shorthand

p(x) = N
(

x; µ, C
)

, (4)

to denote a normal distribution with mean µ and covariance matrix C
evaluated at x.

Multivariate Gaussian distributions have bell shapes. Or what we imag-
ine a bell is in high dimensions. What we can visualize is that one and two
dimensional crosssections of a multivariate Gaussian have bell shapes. In
any case, the mean µ of a multivariate normal distribution represents the
vector x with the highest likelihood. The covariance matrix quantifies the
concentration of the distribution around its mean. Since we are in multi-
ple dimensions the concentration can be different in different directions.

An important particular case is when the covariance matrix C = σ2I is a
scaled identity. In this case the determinant is det(C) = σ2n and the prod-
uct in the exponent is (x − µ)TC(x − µ) = ∥x − µ∥2. These substitutions
yield the probability distribution

p(x) =
1

(2πσ2)n/2 exp
[
− 1

2σ2 ∥x − µ∥2
]

= N
(

x; µ, σ2I
)

. (5)

This is a symmetric distribution. The likelihood of observing a vector x
depends on its distance ∥x − µ∥ to the mean only. It is the same in any
direction. We call this distribution white and we say that the scalar σ2 is

4

-2 -1 0 1 2
-2

-1

0

1

2

-2
-1

0
1

2 -2

-1

0

1

2

0

0.16

Figure 3. Standard White Multivariate Gaussian (Normal) Distribution in 2 Di-
mensions. In a white multivariate Gaussian the likelihood of observing x depends
on the distance between x and the mean µ but it is otherwise the same in all di-
rections [cf. (5)]. Since this is a standard white distribution the mean is µ = 0 and
the covariance is = I.

its variance. In the particular case when the variance is σ2 = 1 and the
mean is µ = 0 we further say that the distribution is standard. We show
a standard white distribution in Figure 3 when n = 2.

Distributions that are not white are called colored. Figure 5 depicts col-
ored Gaussian distributions in two dimensions. All of the distributions
have zero mean but different covariance matrices. Since we are in two
dimensions, the covariance matrix C has 2 rows and 2 columns. We write
it explicitly as

C =

(
σ2

11 σ12
σ12 σ2

22

)
(6)

The first distribution in Figure 5 is more spread along the horizontal axis
and more concentrated along the vertical axis. It corresponds to a covari-
ance matrix with σ2

11 = 4, σ2
22 = 36 and σ12 = 0. The second distribution

in Figure 5 flips the axes. It is more spread along the vertical axis and
more concentrated along the horizontal axis. It corresponds to a covari-
ance matrix with σ2

11 = 36, σ2
22 = 4 and σ12 = 0. The third distribution is a

rotated version of the previous two. It is spread out along the ascending
diagonal and concentrated in the descending diagonal. It corresponds to
σ2

11 = 20, σ2
22 = 20 and σ12 = 16.

Task 1 Generate N = 103 samples from a standard multivariate white
normal distribution in dimension n = 2. Each of these samples is a vector

5

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

Figure 4. Multivariate Gaussian (Normal) Distributions in 2 Dimensions. Multi-
variate Gaussians can be skewed. The skew is determined by the entries of the
covariance matrix [cf. (6)].

with two entries. Plot these samples on the plane and compare their
density to their probability distribution p(x) [cf. (5) with n = 2, µ = 0
and σ2 = 1]. You should observe that samples accumulate in places where
the likelihood p(x) is large.

3 Expectations and Statistical Risks

An expectation is an average weighted by likelihoods. Suppose that we
are working with data x which has a probability distribution p(x). For
each data point x we evaluate a function f (x). The expected value of this
function over the data distribution is the average

Ex∼p(f (x)) =
∫

f (x)p(x) dx. (7)

In this expression, function values f (x) are weighted by the likelihood
p(x) of observing x. The expectation is an integral over these weighted
function values.

The expectation in (7) is to be contrasted with the sample mean. This is
an average over a set of data points drawn from the distribution p(x).
Formally, consider N points xn drawn from the bag described by p(x).

6

Figure 5. Comparison of a Gaussian probability distribution (right), and a scatter
plot of samples from this distribution (left). The regions to which the distribution
assigns larger likelihood (darker areas), also have a larger concentration of sam-
ples.

The sample mean of this set of points is the simple average

f̄ =
1
N

N

∑
n=1

f (xn). (8)

The most important result in the theory of probability, some would say
the only important result, is the proximity between the expectation E(f (x))
and the sample mean f̄ when the points xn are drawn independently. This
fact is called the law of large numbers.

The law of large numbers is remarkable because expectations and sample
means are two quantities of fundamentally different natures. Whereas
the expectation is a property of the probability distribution, the sample
mean is a property of the samples. Different sets of data have different
sample means. The law of large numbers says that all of these sample
means are close to the expectation and, by extension, close to each other.

Ultimately, this is the reason why training on empirical risks is justifiable.
When we train a model on the empirical risk,

w∗
ERM = argmin

w

1
N

N

∑
i=1

c
(

Φ(xi, w)
)

, (9)

7

the hope is that the solution of empirical risk minimization (ERM) is close
to the solution of the statistical risk minimization (SRM) problem

w∗
SRM = argmin

w
Ex∼p

[
c
(

Φ(x, w)
)]

. (10)

Again, (9) and (10) are fundamentally different problems. If we think of
(9) and (10) as models of digit classification problems, the statistical risk
is an expectation (an average) over the bag that contains all of the digits
that have, are, or will ever be written. The empirical risk is an average
over a set of digits pulled out of this bag. The SRM solution w∗

SRM is a
property of the bag. The ERM solution w∗

ERM is a property of the specific
set of data samples that are pulled from the bag.

The fundamental result of statistical learning theory is that the solutions
of ERM and SRM problems are close. In particular, this result implies
that training and execution performance are similar. Both are close to
SRM performance. That SRM and ERM is not a ready consequence of the
law of large numbers. It is a rather involved consequence which requires
restrictions on the choice of the learning parameterization.

It is important to realize that the SRM problem in (10) is the problem that
we would like to solve whereas the ERM problem in (9) is the problem that
we can solve. Solving SRM requires knowing the probability distribution
p(x) which is in general unknown. In Figure 1 we can ascertain with con-
fidence that likelihoods decrease as we move from left to right. However,
we cannot ascertain with any confidence the exact likelihood of drawing
any of these samples. What we can do is pull samples from the bag of
the digits that have, are, or will ever be written, This is ERM.

4 Generative Models

Given a probability distribution q(x) we want to learn a probability dis-
tribution p(x, w) that imitates q(x). This goal can be subsumed within
the definition of artificial intelligence (AI) as the imitation of a natural
system. The distribution q(x) is a natural system such as the bag of all
digits. We want to learn a distribution p(x, w) that generates digits ac-
cording to the same likelihood distribution. We call p(x, w) a generative
model because, once trained, we can use it to generate (artificial) data

8

that is indistinguishable from the (natural) data that we could sample
from q(x) – modulo the accuracy of the training model.

Designing this generative AI requires the selection of a parameterization
and the selection of a loss. We discuss in this section the choice of loss.

4.1 Kullback–Leibler (KL) divergence

We compare distributions q(x) and p(x, w) with the Kullback–Leibler
(KL) divergence which we define as

DKL

(
q(x)∥p(x, w)

)
= Ex∼q log

[
q(x)

p(x, w)

]
=

∫
q(x) log

[
q(x)

p(x, w)

]
dx.

(11)
The ratio p(x, w)/q(x) is a relative comparison of the similarity between
the likelihoods p(x, w) and q(x). This comparison is passed through a
logarithm and averaged over the distribution q(x).

To use the KL divergence as a loss we need to make sure that it is indeed
a loss. We show in the following proposition that this is true

Proposition 1 The KL divergence between distributions q(x) and p(x, w) is
nonnegative,

DKL

(
q(x)∥p(x, w)

)
≥ 0 (12)

with equality attained when q(x) = p(x, w) for all x.

Proof: To show that the KL divergence is nonzero rewrite its definition
in (11) as ∫

q(x) log
[

q(x)
p(x, w)

]
dx = −

∫
q(x) log

[
p(x, w)

q(x)

]
dx. (13)

This fact holds because we reversed the ratio q(x)/p(x, w) inside the log-
arithm but compensated by adding a negative sign at the front.

To proceed, remember that the logarithm function satisfies log(α) ≤ α− 1
for any α > 0. Using this fact in (13) we see that

−
∫

q(x) log
[

p(x, w)

q(x)

]
dx ≥ −

∫
q(x)

[
p(x, w)

q(x)
− 1

]
dx (14)

9

Notice now that in the right hand side we can simplify terms to obtain

−
∫

q(x)
[

p(x, w)

q(x)
− 1

]
dx = −

∫
p(x, w) +

∫
q(x) = 0. (15)

The second equality is true because p(x, w) and q(x) are probability dis-
tributions that integrate to 1 [cf. (1)].

To see that equality holds when q(x) = p(x, w) note that if this is true
the ratio p(x, w)/q(x) = 1 and the logarithm of this ratio equals zero.
Integrating zeroes over all x is still a zero. ■

Proposition 1 shows that the KL divergence is a valid loss for the problem
of imitating the natural distribution q(x) with the distribution p(x, w).
The KL divergence is minimized at DKL(q(x)∥p(x, w)) = 0 when q(x) =
p(x, w).

The KL divergence is more than a valid loss to compare distributions
q(x) and p(x, w). It is a divergence. The meaning of this distinction is not
relevant to us, but it is worth pointing out. A notable observation is that
KL divergences are not necessarily symmetric,

DKL

(
q(x)∥p(x, w)

)
̸≡ DKL

(
p(x, w)∥q(x)

)
(16)

Comparing p(x, w)) to q(x) with KL divregences is not the same as com-
paring q(x) to p(x, w). The choice we make in (17) of comparing p(x, w))
to q(x) is not arbitrary. Its motivation will become clear in the next sec-
tion.

4.2 Risk Minimization for Generative Models

Having established that the KL divergence is minimized when q(x) =
p(x, w), we formulate the learning of a generative model as the statistical
risk minimization problem

w∗
SRM = argmin

w
DKL

(
q(x)∥p(x, w)

)
= argmin

w
Ex∼q log

[
q(x)

p(x, w)

]
.

(17)
As with any other SRM problem, (17) is a problem that we would like to
solve but one that we cannot solve because we do not know the probabil-
ity distribution q(x). We can, however, resort to the acquisition of data,

10

the formation of a training set, and the formulation of the empirical risk
minimization problem,

w∗ = argmin
w

1
N

N

∑
n=1

log
[

q(xn)

p(xn, w)

]
. (18)

This ERM formulation is not workable because we do not know q(xn).
When we pull the samples in Figure 1 from the bag of digits, we do not
know how likely they are. If we did know q(xn), we would be solving the
SRM problem in (17).

This issue has a simple solution. Return to the definition of the KL diver-
gence and split the logarithm of the ratio to write

Ex∼q log
[

q(x)
p(x, w)

]
= Ex∼q

[
log q(x)− log p(x, w)

]
. (19)

In (19) we sum the logarithm of the natural distribution log q(x) and the
artificial distribution log p(x, w). Since the logarithm of the natural distri-
bution log q(x) is independent of the choice of parameter w, its presence
in the SRM problem is moot. The value of Ex∼q log q(x) is the same irre-
spectively of our choice of the parameter w. We have thus shown that the
SRM problem in (17) is equivalent to

w∗
SRM = argmin

w
−Ex∼q

[
log p(x, w)

]
. (20)

This is an SRM problem with loss − log p(x, w). This loss is unusual. It
can be negative and it is not directly comparing p(x, w) to p(x). It is just a
function of the probability p(x, w). Its use is nevertheless justified because
(20) is equivalent to (17) and we have seen that the KL divergence in (17)
is a valid loss. The distribution that minimizes (20) is p(x) and this all
that matters in the end.

Since the statistical problems in (17) and (20) are equivalent we can write
an empirical version of (20) that will be equivalent to the ERM in (18).
This problems takes the form

w∗ = argmin
w

− 1
N

N

∑
n=1

log p(xn, w). (21)

In this ERM problem the distribution q(xn) is not present. We can solve it
by pulling samples from the bag of all digits without having to know the

11

likelihood of the samples. Take a moment to marvel at (21). We are solv-
ing a very difficult problem – the imitation of a probability distribution
from a set of samples – with the minimization of a very simple objective
– a sum of logarithms of the estimated likelihoods of each sample.

5 Generative Normal Distribution Models

In (21), the distribution p(x, w) is a family of distributions parameterized
by w. We choose here to work with white normal distributions with
covariance C = I and variable mean µ,

p(x, w) = p(x, µ) =
1

(2π)n/2 exp
[
−1

2
∥x − µ∥2

]
. (22)

We are now given a set of points xn drawn from an unknown distribution
q(x) and are asked to find the distribution p(x, w) = p(x, µ) within the
class defined in (22) that is closest to q(x). This goal can be attained by
solving the ERM problem in (21) with p(x, w) = p(x, µ) as given in (22).
After eliminating unnecessary constants this substitution yields the ERM
problem

µ∗ = argmin
µ

− 1
2N

N

∑
n=1

∥xn − µ∥2. (23)

We say that the probability distribution p(x, µ∗) is a generative normal
distribution model (GNDM). It is a generative model because we can use
it to generate data from the same distribution that generated the samples
xn. It is generative normal distribution model because it is fitting a normal
distribution to the data samples xn.

GNDM training is a very simple optimization problem to solve. It’s sim-
plicity stems from the fact that the Gaussian family of distributions in (22)
is not very rich. We are using this simple parameterization because it is a
preliminary approach to the diffusion models of Section 6.

Task 2 Let q(x) be a 2D normal distribution with covariance C = I and
mean µ = [1.0; 2.0]. Generate m = 103 samples xn of the distribution q(x).
Solve (23) for this dataset. Compare the learned distribution p(x, µ∗) with
the dataset. They should match closely.

12

Figure 6. Generative Diffusion Processes.

6 Generative Diffusion Models

In Task 2 we succeed at learning a Gaussian probability distribution
p(x, µ∗) that matches samples xn of an unknown Gaussian probability
distribution q(x). In practice, we want to learn distributions q(x) that
are more complex than Gaussian distributions. Say, the probability dis-
tribution of all the digits that have, are, or will ever be written. To learn
these distributions we need a complex parametric family of distributions
p(x, w) to match to our data. Generative diffusion models (GDMs) are
such a class. They are based on the parameterization of a backward dif-
fusion process (Section 6.2) whose introduction requires that we first ex-
plain forward diffusion processes (Section 6.1)

6.1 Forward Diffusion Process

A forward diffusion process is defined by the recursive mixing of data
with samples from a standard white normal distribution. Consider then
data samples x = x0 ∈ Rn drawn from a data distribution q(x0) = q(x),

x = x0 ∼ q(x0) = q(x). (24)

Introduce now a time index t = 1, . . . , T and associate samples ϵt ∈ Rn

from a standard white normal distribution N (ϵ, 0, I) with each time index
t – the standard white distribution is given by (5) with µ = 0 and σ2 = 1.

13

Further consider a sequence of scalar coefficients αt < 1 and define the
sequence

xt =
(√

αt

)
× xt−1 +

(√
1 − αt

)
× ϵt. (25)

When adding the sample ϵt to xt−1 we say that we are adding noise.
This is because as we can see in Figure 6, samples from white normal
distributions look like noise. Although not required, we choose constants
αt ≈ 1 in practice. This means that at each step we are adding a small
amount of noise.

The idea of the recursion in (25) is to add noise progressively. In the first
application of (25) we go from the input data sample x0, which does not
have any noise added, to sample x1. This sample has some amount of
noise. We then proceed to add some more noise to create x2 and even
more noise to create x3. Observe that since α1 < 1 the noise is becoming
more prominent while the input data x0 is being washed out. The goal is
that when we get to time T, the signal xT is almost the same as a sample
from a white normal distribution. That we end up with pure noise is key
to construct the backward process in Section 6.3 and its learned version
in Section 6.3.

Each noising step can described as a conditional distribution

q(xt|xt−1) = N (xt;
√

αtxt−1, (1 − αt)I) (26)

In a nutshell we start from initial image x0 and add a small amount of
noise to it in each step until we reach an image xT in the final step that’s
essentially just pure Gaussian noise (see Figure 6). This is called the
forward process.

It is relevant that the properties of the Gaussian distribution lets us sam-
ple an xt directly from x0 without having to go through all the interme-
diate steps as follows:

xt =
√

ᾱt · x0 +
√

1 − ᾱt · ϵ0 (27)

where ᾱ = ∏t
i=1 αi and ϵ0 ∼ N (ϵ0; 0, I).

6.2 Backward Diffusion Process

Now comes the hard part: How can we start from a pure noise sample
xT and iteratively denoise the image until we recover an original sample

14

x0? Essentially, our goal is to reverse the Forward process. We call this
reversed process the backward process.

Recall that each step in the Forward process is essentially sampling from
a Gaussian distribution. Luckily, it turns out that if we knew the original
sample x0 that we started from, then each denoising step in the backward
process would also be just sampling from a Gaussian,

q(xt−1|xt, x0) = N (xt−1; µq(xt, x0), σq(t)) (28)

This is due to properties of the Gaussian Distribution. The mean of this
Gaussian, µq(xt, x0), is essentially the likeliest xt−1 from which xt could
have been generated and importantly, it depends on x0 as well as xt.

µq(xt, x0) =

√
αt(1 − ᾱt−1)xt +

√
ᾱt−1(1 − αt)x0

1 − ᾱt
(29)

In practice, it is usually easier to work with the added noise ϵ0 rather
than the original image x0. Thus from (27) we can write x0 in terms of ϵ0
and xt to get:

µq(xt, ϵ0) =
1√
αt

xt −
1 − αt√

1 − ᾱt
√

αt
ϵ0 (30)

Recall that our goal in generative modeling was to learn a distribution
p(x, w) that imitates q(x). In diffusion models, we have established so far
that to get a sample from q(x), we can start from a pure noise sample
xT , and sample from conditional Gaussian distributions q(xt−1|xt, x0) =
N (xt−1; µq(xt, ϵ0), σq(t)) at each time step from t = T, T − 1, · · · , 1, until
we reach x0. Let’s call this the ”True Backward process”. To imitate this
process, we will define our model p(x, w) in the same way i.e. to sample
from p(x, w), we start from a pure noise sample xT , and sample from
conditional Gaussian distributions p(xt−1|xt, w) at each time step until
we reach x0. We call this the learned backward process and discuss it in
the next section.

15

6.3 Learned Backward Diffusion Process

Our goal is for the distribution of samples generated by the learned Back-
ward process, p(x0, w), to match the distribution of samples generated by
the ”true Backward process”, q(x0), which is in fact the underlying data
distribution. The bad news is that unlike the generative normal distri-
bution in part 3 where we could evaluate p(x, w) for any given x, w, for
a diffusion model, evaluating p(x0, w) is intractable (both in theory and
practice). However, the good news is that if the intermediate denoising
steps of the true and learned backward processes match closely, meaning
if the Gaussian distributions q(xt−1|x0, xt) and p(xt−1|xt, w) are close for
all t = 1, · · · T, then the final sample distributions q(x0) and p(x0, w) will
also be close. Therefore we will choose our loss function in a way to en-
sure these distributions are close in every step. Thus in a similar manner
to (17) but over all time steps we write:

w∗
SRM = argmin

w
Ex0

[
T

∑
t=2

Ext∼q(xt |x0)

[
DKL

(
q(xt−1|x0, xt)∥p(xt−1|xt, w)

)]]
(31)

We will now focus on simplifying the loss in (31). Recall that q(xt−1|x0, xt)
was a Gaussian distribution with mean µq(xt, x0) and variance σq(t). To
imitate it as closely as possible, it makes sense to choose p(xt−1|xt, w) to
also be a Gaussian with similar mean and variance:

q(xt−1|xt, x0) = N (xt−1; µq(xt, ϵ0), σq(t)) (32)

p(xt−1|xt, w) = N (xt−1; µp(xt, w), σq(t)) (33)

Note that the variance has been chosen to be exactly the same. We can do
this because σq(t) only depends on the time step and a fixed noise sched-
ule, both of which we have access to in the learned backward process.
With this smart choice of p(xt−1|xt, w), we can reduce the loss in (31) to
something more familiar:

w∗
SRM = argmin

w
Ex0

[
T

∑
t=2

Ext∼q(xt |x0)

[
∥ µp(xt, w)− µq(xt, ϵ0)∥2

]]
(34)

This should remind us of the loss in (23). Our goal has now been simpli-
fied to matching µq(xt, ϵ0) as closely as possible without knowing ϵ0.

16

Again we can choose our model smartly based on our knowledge of
µq(xt, ϵ0).

µq(xt, ϵ0) =
1√
αt

xt −
1 − αt√

1 − ᾱt
√

αt
· ϵ0

µp(xt, w) =
1√
αt

xt −
1 − αt√

1 − ᾱt
√

αt
· ϵ̂(xt, t, w)

(35)

With this choice of µp(xt, w) the loss in (34) turns into:

w∗
SRM ≃ argmin

w
Ex0

[
T

∑
t=2

Ext∼q(xt |x0)

[
∥ ϵ̂(xt, t, w)− ϵ0∥2

]]
(36)

We have ignored the time dependent weighting terms 1−αt√
1−ᾱt

√
αt

as includ-

ing them doesn’t result in any performance gains. At the end of the day,
to train our diffusion model, we have to train a model ϵ̂(xt, t, w) to predict
the true noise ϵ0, given the current noisy sample xt and time step t. The
ERM version of the SRM problem in (36) is:

w∗
ERM = argmin

w

N

∑
i=1

T

∑
t=2

M

∑
j=1

∥ ϵ̂(x(i,j)t , t, w)− ϵ
(i,j)
0 ∥2 (37)

where ϵ
(i,j)
0 ∼ N (ϵ

(i,j)
0 ; 0, I), and x(i,j)t =

√
ᾱt · x(i)0 +

√
1 − ᾱt · ϵ

(i,j)
0 .

In practice during training, for a batch of samples, e.g. x(1)0 , · · · , x(B)
0 ,

we randomly sample B time steps t(1), · · · t(B) uniformly from 2 to T, and
also sample B points ϵ

(1)
0 , · · · , ϵ

(B)
0 from a standard Gaussian. The batch

loss would then be:

B

∑
i=1

∥ ϵ̂(x(i)t , t(i), w)− ϵ
(i)
0 ∥2 (38)

Depending on the type of data that we are generating, we could choose
different models as our noise predictor ϵ̂(xt, t, w). For generating images
we will use a U-Net architecture as our noise predictor as discussed in
the next section

17

7 Image Generative Diffusion Models

In the remainder of the this lab, we will train a Diffusion model to learn
to generate images of Handwritten digits by training it on the MNIST
dataset. We start by loading the dataset.

Task 3 Load the MNIST dataset. Since traning on the entire dataset will
take very long, we will be training on a subset of it with m = 3000 sam-
ples. Your training set should have a roughly equal number of samples
from each digit class. You should also normalize each image and resize it
to be 32 × 32 pixels.

We now write a function to implement the Forward process.

Task 4 Write a function that takes a batch of images, and a list of timesteps,
as inputs. The output is a batch of noisy versions of the input images ac-
cording to the given timesteps. (See Equation (27)). For the noise sched-
ule, αt decreases linearly across timesteps from α0 = 0.9999 to αT = 0.98.
Choose the total number of diffusion time steps as T = 500. Show an
example batch with a single image. Plot the noisy images at time steps
t = 100, 200, 300, 400, 500. For t = 500 the image should be indistin-
guishable from pure noise.

It remains to choose the noise predictor model ϵ̂(xt, t, w). We choose a
time-conditional U-Net model for this purpose. A U-Net is a convolu-
tional neural network architecture initially used mainly for image seg-
mentation tasks. It has also proven useful for denoising images which
is why we use it here to predict the noise added to images. The U-Net
features an encoder-decoder structure. The encoder, or contracting path,
captures context through convolutional and pooling layers that down-
sample the input image. The decoder, or expansive path, reconstructs
the image using up-sampling layers, which are combined with high-
resolution features from the encoder via skip connections. These skip
connections help preserve spatial information. The architecture is sym-
metrical, resembling a U-shape hence the name. For the purposes of this
lab, just note that the U-Net consists of Convolutional layers which we
know are a good fit for processing images. The U-Net model that you
will be using has been provided in the notebook.

18

We Also need to implement the backward process, that we can later use
to sample new images using our trained model.

Task 5 Write a sampling function that takes a trained U-Net, and a num-
ber m as inputs and generates m samples by running the backwards pro-
cess described in (33).

Finally, we train our noise predictor model using gradient descent.

Task 6 Write a Pytorch training loop implementing Gradient Descent
with the batch loss given in (38). Train the model for at least 200 epochs.
Plot the training loss as a function of the epoch number. After training,
generate 64 images using your trained model and the sampling function
you wrote for task 5. Display them in an 8 by 8 grid.

8 Evaluating a Diffusion Model

Now that we have trained a diffusion model, it is time to evaluate it
quantitatively. In order to do this we use a metric called the Frechet
Inception Distance (FID) score. The FID score essentially measures the
distance between the mean and covariance of samples generated by the
generative model and the ’ground truth’ mean and covariance computed
from the data. A smaller FID score (therefore smaller distance) means
the model has learned to capture the underlying data distribution more
accurately. You can think of the FID as something akin to a test error. It
is important to note that the distance is not computed in the pixel space
but rather in the feature space of features extracted by a neural network.

Task 7 Compute the FID score of your trained model with respect to a
large subset of the MNIST dataset (e.g. 10000 samples) using the cleanFID
library. The more generated samples you use to compute the FID, the
more accurate the score will be. However, generating samples using your
trained model can be slow. Try using at least a few thousand generated
samples.

19

9 Report

Do not take much time to prepare a lab report. We do not want you to
report your code and we don’t want you to report your work. Just give
us answers to questions we ask. Specifically give us the following:

Question Report deliverable

Task 1 Plot of generated samples.

Task 2 Parameter µ∗, Distribution vs Dataset plot

Task 3 Do not report.

Task 4 Noisy Images

Task 5 Do not report

Task 6 Loss Plot, Generated Images

Task 7 FID score

We will check that your answers are correct. If they are not, we will
get back to you and ask you to correct them. As long as you submit
responses, you get an A for the assignment. It counts for 8 points total.

20

	Data Probability Distributions
	Gaussian Distributions
	Multivariate Gaussian Distributions

	Expectations and Statistical Risks
	Generative Models
	Kullback–Leibler (KL) divergence
	Risk Minimization for Generative Models

	Generative Normal Distribution Models
	Generative Diffusion Models
	Forward Diffusion Process
	Backward Diffusion Process
	Learned Backward Diffusion Process

	Image Generative Diffusion Models
	Evaluating a Diffusion Model
	Report

