
Reinforcement Learning

Alejandro Ribeiro and Sergio Rozada

November 11, 2024

1 Markov Decision Processes

A Markov Decision Process (MDP) is a dynamical system f with state tra-
jectory st which we control through the choice of actions at. The evolution
of the dynamical system is given by

st+1 = f
(

st, at
)

. (1)

We further postulate that whenever we visit the state s and take action
a we collect a reward r(s, a). The state evolution equation in (1) along
with the rewards r(s, a) define the MDP. The use of the word “Markov”
indicates that the evolution of the process depends on the state st and the
action at but does not depend on past state-action pairs (su, au) for u < t.

An MDP that models walking on a line is shown in Figure 1. The states
s = 0, 1, . . . , N are scalar numbers that indicate the walker’s current posi-
tion. When we are in a state other than s = 0 or s = N the possible actions
are a = +1 and a = −1. They signify taking a step forward or backward,
respectively. When in state s = 0 the possible actions are a = +1 and
a = 0, representing a step backward or staying in place. When in state
s = N the possible actions are a = 0 and a = −1, staying in place or
walking backwards. It follows from this description that the dynamical
system is defined by the state evolution equation

st+1 = st + at. (2)

To complete the description of the MDP we assign rewards to each state-
action pair. We choose to make r(s, a) = 0 for all states s other than

1



n n + 1 · · · Nn − 1· · ·0

a = +1 a = +1 a = +1 a = +1

a = −1a = −1a = −1a = −1

a = 0

a = 0

r(0, a) = 0 r(n − 1, a) = 0 r(n, a) = 0 r(n + 1, a) = 0 r(N, a) = 1

Figure 1. Markov Decision Process (MDP). A walker moves forward when choos-
ing action a = +1 and backwards when choosing action a = −1. Action a = 0 at
the border states keeps the walker in place. The rewards r(N, a) = 1 for s = N
and r(s, a) = 0 for other states s incentivize the walker to move forward.

s = N and r(N, a) = 1 for s = N irrespectively of the value of the action
a. This reward structure is signifying that s = N is a desirable state. It
incentivizes the walker to move forward.

1.1 Policies

A policy π is a mapping from states s to actions a = π(s) so that whenever
we visit state s we take action a = π(s). Thus, the system’s state st when
executing policy π evolves according to

st+1 = f
(

st, at
)
= f

(
st, π(st)

)
. (3)

In Figure 2 we illustrate two policies for the walker in Figure 1. The
forward policy selects πF(N) = 0 at the terminal state s = N and πF(s) =
1 for other states s ̸= N. The backward policy selects actions πB(0) = 0
and πB(s) = −1 for s ̸= 0.

Notice that different policies accumulate different amounts of rewards.
Our goal when working with MDPs is to find the policy π that results
in trajectories that accumulate as much reward as possible. Defining this
goal mathematically requires some effort (see Section 2.2) but it is clear
that for the walker in Figure 1 the optimal policy is to walk forward to
reach state s = N which is the only state with nonzero rewards.

2



n n + 1 · · · Nn − 1· · ·0

πF(0) = +1 πF(n − 1) = +1 πF(n) = +1 πF(N − 1) = +1
πF(N) = 0

n n + 1 · · · Nn − 1· · ·0

πB(N) = −1πB(n + 1) = −1πB(n) = −1πB(1) = −1
πB(0) = 0

Figure 2. Policies. Policies map states to actions. For the walker in Figure 1 define
the forward policy as πF(N) = 0 and πF(s) = 1 for s ̸= N and the backward
policy as πB(0) = 0 and πB(s) = −1 for s ̸= 0. Different policies accumulate
different total rewards. Optimal policies accumulate as much reward as possible.

1.2 Stochastic Policies and MDPs

The MDP in (2) is deterministic. The state-action pair (st, at) completely
determines the next state st+1 = f (st, at). The policy in (3) is also deter-
ministic. Given the current state st completely determines the choice of
action at = π(st). Both of these can be stochastic.

In a stochastic MDP the state action pair (st, at) controls the probability
distribution of the next state. I.e., the state st+1 is drawn from the condi-
tional probability distribution

st+1 ∼ p
(

st+1 | st, at
)
, (4)

Instead of dictating the next state st+1, the choice of action at dictates the
likelihood that the next state is st+1.

Figure 3 shows a stochastic variation of the walker in Figure 1. This
walker moves up with probability p + a and it moves down with proba-
bility 1 − p − a. Thus, the MDP is characterized by the stochastic evolu-
tion,

p
(

st+1 = st + 1 | st, at
)

= p + a,

p
(

st+1 = st − 1 | st, at
)

= 1 − p − a. (5)

In (5) actions a must be chose so that p + a and 1 − p − a are valid prob-
abilities. For instance, we may have that p = 1/2 and a = +1/4,−1/4.
With these values the model in (5) represents a random walker that can

3



n n + 1 · · · Nn − 1· · ·0

p + a p + a p + a p + a

1 − p − a1 − p − a1 − p − a1 − p − a

p + a

1 − p − 1a

r(0, a) = 0 r(n − 1, a) = 0 r(n, a) = 0 r(n + 1, a) = 0 r(N, a) = 1

Figure 3. Stochastic MDP.

bias its walk up or down. It can make the probability of walking forward
as high as 3/4 by choosing a = +1/4 and the probability of walking
backwards as high as 3/4 by choosing a = +1/4.

In addition to working with stochastic MDPs we can also choose to work
with stochastic policies. A stochastic policy π does not determine the
action at exactly but the probability of choosing a particular action,

a ∼ π
(
a | s

)
. (6)

For example, the random walker in Figure 3 may decide to bias their walk
up with probability q and to bias their walk down with probability 1 − q,

π
(
a = +1/4 | s

)
= q,

π
(
a = −1/4 | s

)
= 1 − q. (7)

We will work in this chapter with deterministic MDPs and determinis-
tic policies. They are easier to explain and train. However, we need
to be aware of stochastic policies and MDPs because most of the litera-
ture on reinforcement learning works with stochastic policies and MDPs.
The actor-critic method that we will introduce later works verbatim for
stochastic MDP.

2 Q-Functions and Value Functions

We are given a discount factor γ < 1, we fix a policy π, and we ini-
tialize the system with state-action pair (s, a) = (s0, a0). We define the
Q-function Q(s, a; π) as the reward accumulated by executing policy π

4



when the system is initialized at state-action pair (s, a),

Q(s, a; π) =
∞

∑
t=0

γt r(st, at)

= r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + . . . (8)

In this reward accumulation the purpose of the discount factor γ is to give
more weight to earlier collection of rewards. Notice that the MDP f and
the policy π enter the right hand side of (8) trough the state evolution.
This is because actions at = π(st) in (8) follow the policy π and state
transitions st+1 = f (st, at) = f (st, π(st)) follow the MDP.

Indeed, the system starts at the state-action pair (s, a) = (s0, a0) and col-
lects the reward r(s, a) = r(s0, a0). As per (1), the system moves to state
s1 = f (s0, a0) = f (s, a). At this point in time we choose action a1 = π(s1)
to collect the reward γr(s1, a1) and effect the system to transition into state
s2 = f (s1, a1) = f (s1, π(s1)). We then execute action a2 = π(s2) to collect
reward γ2r(s2, a2) and transition into state s3 = f (s2, a2) = f (s2, π(s2)).
We keep executing actions as dictated by the policy π so that at arbi-
trary time t we execute action at = π(st) to collect reward γtr(st, at) and
transition into state st+1 = f (st, at).

Notice that in the definition of the Q-function Q(s, a; π) in (8), the action
a may or may not be the policy action π(s).

The Q-function in (8) describes the reward that we collect when the sys-
tem is initialized at state-action pair (s, a) = (s0, a0). In general, we care
about the system when it is initialized at a number of different states s.
To capture this interest we consider a distribxution p(s) of initial states
s = s0 and define the value function of policy π as

V(π) = Ep(s)

[
Q
(

s, π(s); π
) ]

. (9)

Observe that in the definition of the value function we particularize a to
π(s) in the Q-function. The value function considers the effect of running
policy π from t = 0 onward averaged over an exogenous choice of the
distribution of initial states s0 = s.

5



2.1 Q-Function Recursion

The form of the Q-function is such that it can be computed recursively.
This result is simple to derive but important enough to be highlighted as
a proposition.

Proposition 1 Consider an MDP f as defined in (1) along with a policy π as
defined in (3). The Q-function Q(s, a; π) in (8) satisfies the recursion

Q
(

s, π(s); π
)

= r(s, a) + γQ
(

s+, π(s+); π
)

, (10)

for any initial state s and next state s+ = f (s, π(s)) .

Proof: To prove (10) we write Q(s, a; π) = Q(s0, a0; π) for clarity and
we recall that in the definition of the Q-function in (8) actions at = π(st)
follow the policy π and state transitions st+1 = f (st, at) = f (st, π(st))
follow the MDP. In particular s1 = f (s0, a0) and a1 = π(s1).

Begin by separating the term corresponding to t = 0 in (8) from the other
summands. This yields the relationship,

Q(s0, a0; π) = r(s0, a0) + γ
∞

∑
t=1

γt−1 r(st, at). (11)

Observe now that the summation in the right hand side is the Q-function
Q(s1, a1; π). The sum starts at t = 1, but this is just a summation index
that we can shift backwards. For a reader that needs convincing we write
the sum in expanded form,

∞

∑
t=1

γt−1 r(st, at) = r(s1, a1) + γr(s2, a2) + γ2r(s3, a3) + . . . , (12)

which is the same as (8) but with initial condition (s, a) = (s1, a1). We
have therefore concluded that

Q(s0, a0; π) = r(s0, a0) + γQ(s1, a1; π) (13)

This is the same as (10) because as we have already remarked s1 =
f (s0, a0) and a1 = π(s1). We can then make the substitutions (s0, a0) =
(s, π(s)) and (s1, a1) = (s+, π(s+)). ■

6



The claim in Proposition 1 is a rather obvious statement. It says that the
reward we accumulate from t = 0 onwards is the sum of the reward at
t = 0 and the reward we accumulate from t = 1 onwards. We just need
to discount the reward accumulated from t = 1 onwards.

2.2 Optimal Policy

A first approach to define an optimal policy is to maximize the Q-function
for a certain initial condition (s, π(s)),

π∗ = argmax
π

Q(s, π(s); π) (14)

Although it seems that the optimal policies π∗ in (14) depend on the
initial condition (s, a) = (s0, a0) this is not quite the case. There exists an
optimal policy π∗ that is the same for all initial conditions. This is true
because having more than one optimal policy contradicts Proposition 1.
To see that this is true suppose that policy π∗ is optimal for the Q-function
Q(s, π(s); π) but not for the Q-function Q(s+, π(s+); π) that is maximized
by policy π∗∗. If this is true,

Q
(

s, π∗(s); π∗
)

= r(s, π∗(s)) + γQ
(

s+, π∗(s+); π∗
)

< r(s, π∗(s)) + γQ
(

s+, π∗∗(s+); π∗∗
)

, (15)

where the equality follows from (10) and the inequality is true because
π∗ is not optimal for Q(s+, π(s+); π). This inequality contradicts the
statement that π∗ is optimal for Q(s, π(s); π) because we can change the
policy to π∗∗ from time t = 1 and increase the accumulated reward.

A second approach to defining an optimal policy π∗ is to maximize the
value function V(π).

π∗ = argmax
π

V(π) (16)

Although it may seem that (16) yields a different optimal policy this is not
quite the case. Since a policy that is optimal for all initial conditions exists,
this policy is also optimal for the average in (16). However equivalent,
working with value functions is preferable in practice because finding
policies that minimize value functions is easier than finding policies that
minimize Q-functions.

7



Although we can attempt to solve (16) directly over the policy π we chose
to introduce a learning parameterization π(s, α). This leads to the opti-
mization problem

α∗ = argmax
α

V(π(α)) = argmax
α

Ep(s)

[
Q
(

s, π(s, α); π(α)
) ]

. (17)

The advantage of introducing a learning parameterization is that after
solving (17) we can execute optimal actions π(st; α∗) with (simple) evalu-
ations of the learning parameterization. This is our customary reason for
using machine learning.

2.3 Circuit Navigation

The trajectory control problem we addressed in Chapter 8 can be written
as a particular case of (17). Consider a reference trajectory specified here
as set S of vectors sR = [pR; vR] where pR and vR are coordinates and
velocities that we want to track. The pair [pR; vR] represents an optimal
pair of positions and velocities as determined, e.g., by an expert driver.
The state of the system is a vector s = [p, v] that contains the position
and velocity of the car. We control the car by choosing accelerations at.
A first approach to capture the goal of following the expert is the reward
function,

r1(st, at) = − min
[pR;vR]∈S

[
a
2
∥pt − pR∥2 +

b
2
∥vt − vR∥2

]
. (18)

The term −(a/2)∥pt − pR∥2 keeps the position of the car pt close to the
reference trajectory pR. The term −(b/2)∥vt − vR∥2 keeps the car’s veloc-
ity vt close to the velocity of the expert vR. The minimum in the reward
r(st, at) is taken over all vectors sR = [pR; vR] in the expert trajectory S .
No matter the car’s position and velocity, we want to incentivize it to
move closest to the nearest point in the expert trajectory.

If the car is initialized at state s with action a and we execute policy π,
the Q-function reduces to

Q(s, a; π) = −
∞

∑
t=0

γt min
[pR;vR]∈S

[
a
2
∥pt − pR∥2 +

b
2
∥vt − vR∥2

]
, (19)

which we obtain by substituting (18) into (8). Recall that the policy π
enters Equation (19) in the generation of the trajectory. States st = [pt, vt]

8



are the consequence of executing actions au = π(su) and the evolution
su+1 = f (su, au) of the dynamical system for all times u < t. Except
for the discount factor γ this is the same loss we used to design MPC
controllers in Lab 8.

Further consider further a set if initial states si drawn from a set of N
possible initial states. Using this set of states as the initial state distribu-
tion p(s) and substituting (19) for the Q-function in (9) yields the value
function

V(π) = − 1
N

N

∑
i=1

∞

∑
t=0

γt min
[pR;vR]∈S

[
a
2
∥pit − pR∥2 +

b
2
∥vit − vR∥2

]
, (20)

where pit and vit are the trajectories generated on the dynamical system f
when we execute policy π and start the system at initial condition si. We
see here that minimizing (19) and (20) are indeed equivalent problems as
is true in general for MDPs. We also see why solving (20) is preferable
in practice. Having a set of initial conditions si instead of a single initial
condition s yields a richer set of states to explore as we learn an optimal
policy.

A more refined reward combines the reward in (18) with the norm of the
acceleration

r(st, at) = r1(st, at) − c
2
∥at∥2. (21)

The term −(c/2)∥at∥2 penalizes large accelerations. This is to prevent
imitation of the expert with swerving trajectories. Penalizing large ac-
celerations moves the car cloer the expert trajectory with smooth move-
ments. The use of different scaling constants a, b, and c in (18) and (21)
gives different importance to positions, velocities, and accelerations. E.g.,
it is clear that keeping positions pt and pR close is more important than
keeping velocities close and that we should therefore make a > b.

Henceforth, we use the reward r(st, at) in (21).

Task 1 Code a car class whose attributes are an expert trajectory S , the
state of the car s = [p, v], and its acceleration a. Make the car simulator a
parent of this class. We take this simulator as the system f so that calling
simulator.step(s,a) computes the state s′ = f (s, a). Although not
mathematically necessary, it may help with interpretations to know that
a step of the car simulator corresponds to Ts = 50ms.

9



Add a reward method that computes the reward r(s, a) collected by the
car given the state of its attributes. This method computes the reward in
(21).

Instantiate the car and initialize its expert trajectory. To solve this task you
need to load the car simulator and the expert trajectory. The simulator
can be found here, and the expert trajectory here.

2.4 Observations

Agents in an MDP are assumed to know their states st. This is how they
can execute the action at = π(st) dictated by their policy. In addition
to states, agents may be also assumed to have access to observations ot.
When these observations are available, the policy π is a function of the
state and the observation,

at = π(st, ot). (22)

In circuit navigation the expert trajectory S is a possible example of an
observation that the agent leverages to make acceleration decisions.

Observations ot do not affect the evolution of the dynamical system except
for their effect in the choice of policy. When choosing actions as in (22),
the state of the system still evolves according to the same MDP,

st+1 = f
(

st, at
)
= f

(
st, π(st, ot)

)
. (23)

Observations ot = h(st) are also completely determined by the state st
through the observation function h. The observation function g, same as
the dynamical system f , is unknown.

Since observations ot are determined by states st and state evolution is
independent of observations [cf. (23)] – save for their effect in the action
choice [cf. (22)] – we think of observations ot as side information that
is attached to the state st. This information is available to make better
decisions at = π(st, ot) but does not otherwise impact the evolution of
the MDP. This is different from states st that affect both, the choice of
action at and the next state st+1.

In subsequent sections we write policies as at = π(st) even though we
most often mean at = π(st, ot). We do so to avoid complicating notation.

10

https://github.com/varunchitturi/ese-2000-labs/blob/main/Lab%206/Simulator.py
https://github.com/varunchitturi/ese-2000-labs/blob/main/Lab%206/lerp_expert_sample.npy


Task 2 Modify the class in Task 1 to add an observation attribute o. Add
an observation method that given the state of the car s = [p, v] and the
reference trajectory S computes the observation o consisting of the no
reference states sR whose positions pR are closest to the position of the
agent p. For subsequent experiments we recommend that you set no = 10.

Modify the parent method simulator.step(s,a) to include an update of the
observation attribute using the observation method. Modify the init
method to initialize the observation attribute using the observation method.

3 Reinforcement Learning

In Section 2.2 we define optimal policies of Markov decision processes
(MDP). If the MDP transition function f and the reward functions r are
known, the optimization problems formulated in Section 2.2 are regular
optimization problems. The formulation in (17), in particular, is a stan-
dard machine learning problem. However, the function f and the reward
r are not known. A possible approach to solve (17) is to design or learn
models of f and r and use them to find the policy α∗. This is model
predictive control (MPC).

Alternatively, we can learn the policy α∗ by probing the MDP with differ-
ent policies π and observing the collected rewards V(π). This is reinforce-
ment learning (RL). We can then think of RL as the process of learning
and minimizing the value function. This is in contrast to MPC where we
build or learn models of the transition function f and the reward function
r as an intermediate step to finding the optimal policy α∗.

4 Policy Optimization

To solve (17) without learning a model of the MDP, we run gradient ascent
on the policy parameter α. Introduce then an iteration index k, an step
size ϵ, an initial value α0 and proceed through iterations that update α by
following gradients g(α) := ∂V(π(α))/∂α,

αk+1 = αk + ϵ g(αk) = αk + ϵ
∂

∂α
V(π(αk)). (24)

11



In contrast to gradient descent we move in the direction of the gradient,
not its opposite. This modification is because we are searching for the
maximum of V(α), not its minimum.

To implement (24) we need to compute gradients of the value function.
This computation is more difficult than it seems but it can be carried out.
To give a gradient expression it is convenient to write the value function
as

V(π(α)) = Ep(s)

[
Q
(

s, π(s, α); π(α)
) ]

= Ep(s)

[
Q
(

s, a; π(α)
) ]

, (25)

where in the second equality it is implicit that a = π(s, α). This is just a
notation simplification.

We now consider a trajectory st generated by policy π. This is a trajectory
in which we choose at = π(st) time t = 0 onwards. The gradient of the
value function can then be written as

g(α) = Ep(s)

[
∞

∑
t=0

γt × ∂

∂at
Q
(

st, at; π(α)
)
× ∂

∂α
π(st, α)

]
. (26)

In this expression the gradients of the Q-function are taken with respect
to the choice of action at and are evaluated at at = π(st, α). I.e., it is
implicit that at = π(st, α) as it is implicit in (25) that a = π(s, α).

4.1 Critics

In (26), the gradients ∂π(st, α)/∂α are with respect to the learning pa-
rameterization and can be computed with automated differentiation. The
gradients ∂Q(st, at; π(α))/∂at are more difficult to evaluate because we
do not know the Q-function. We solve the latter problem with the intro-
duction of a critic.

A critic of a given policy π is a function Q̃(s, a; β) that maps the state-
action pair (s, a) = (s, π(s)) and the parameter β to an estimate of the
Q-function’s value Q(s, a; π). Having a critic available we can replace the
gradient of the Q-function in (26) for the gradient of the critic to compute
gradient estimates,

g̃(α) = Ep(s)

[
∞

∑
t=0

γt × ∂

∂at
Q̃
(

st, at; β
)
× ∂

∂α
π(st, α)

]
. (27)

12



The vector g̃(α) is an estimate of the value function gradient based on
derivatives of the critic function. We call it a critic gradient for short.

The advantage of replacing the critic Q̃(s, a; β) in the gradient compu-
tation is that the critic is a parametric function. As such, the gradients
∂Q̃(s, a; β)/∂a can be computed with automated differentiation. We can
therefore introduce an iteration index k, a step size ϵ and an initial value
α0 to update αk by following the critic gradients g̃(αk),

αk+1 = αk + ϵ g̃(αk). (28)

In this recursion the vectors g̃(αk) are the critic gradients defined in (27).
This is in contrast to the true gradients g(αk) of the value function V(π)
that we use in (24) and express in (26).

The downside of using a critic is that it is an approximation, not the
true, Q-function. For this to be workable we have to learn a good critic
with close function values Q̃(s, a; β) ≈ Q(s, a; π(α)) and close derivatives
∂Q̃(s, a; β)/∂a ≈ ∂Q(s, a; π(α))/∂a. In a sense, (27) does not solve the
problem of not knowing the Q-function in (26). It punts it. This is literal.
We assume in the following that a critic is available and return to its
computation in Section 6.

4.2 Actors

An actor is an agent that given critic Q̃(s, a; β), solves the optimization
problem

α∗(β) = argmax
α

Ep(s)

[
∞

∑
t=0

γt × Q̃
(

st, π(st; α); β
) ]

= argmax
α

ℓA(α, β), (29)

where in the second equality we define the actor loss ℓA(α, β), which we
call a loss despite the fact that it is a reward we want to maximize. In
this loss we draw initial samples s0 = s from the distribution p(s). We
then generate trajectories st from these initial conditions by executing the
policy π(α). The critic Q̃(s, a; β) is evaluated at states and actions that
correspond to this trajectory.

13



The optimization in (29) is justified by the fact that the gradients of the
loss ℓA(α, β) have the same form of the critic gradients g̃(α) in (27),

∂

∂α
ℓA(α, β) = Ep(s)

[
∞

∑
t=0

γt × ∂

∂at
Q̃
(

st, at; β
)
× ∂

∂α
π(st, α)

]
. (30)

There is, however, a subtle difference between (27) and (30). In (27) the
critic Q̃(s, a; β) approximates the Q-function of policy π(α). The same
policy whose gradients we are evaluating. In (30) the critic Q̃(s, a; β) is
fixed and we evaluate gradients at an arbitrary policy parameter α. This is
the reason why in (29) the optimal actor parameter is written as a function
of β.

That the critic parameter (29) is fixed is not an insignificant issue. Let
us, however, set it aside for the time being and work on its solution. We
revisit this challenge in Section 7.

To solve (29) we consider stochastic approximations of the loss ℓA(α, β).
Formally, consider an initial state s ∼ p(s) sampled from the initial state
distribution and compute

ℓ̂A(α, β) =
∞

∑
t=0

γt × Q̃
(

st, π(st; α); β
)

. (31)

As in (29), the trajectory st is generated from the initial condition s by
executing the policy π(α). We refer to (31) as a rollout. We generate
a trajectory by executing (or rolling out) the policy π(αk) from initial
condition s. Although we keep a sum running the t = ∞ for simplicity,
we limit the rollout to a finite limte t = T in practical implementations.

Instead of a single initial state sample s we may work with a batch of B
samples si ∼ p(s) drawn from the initial state distribution. In this case
the stochastic approximation of the loss ℓA(α, β) becomes

ℓ̂A(α, β) =
1
B

B

∑
i=1

∞

∑
t=0

γt × Q̃
(

sit, π(sit; α); β
)

. (32)

As in (29) and (31) the trajectories sit are generated from the initial condi-
tions si by executing the policy π(α).

Task 3 The code in this link provides a critic class with a trained
critic for the circuit navigation problem desribed in Section 2.3. Run the

14

https://github.com/varunchitturi/ese-2000-labs/blob/main/Lab%206/Actor_Critic.py


method critic.load to load the critic and the method critic.evaluate(s,
a) to evaluate the critic at state-action pair (s, a). The critic class is a
child of nn.Module to allow for computation of gradients with auto-
mated differentiation. This critic has been trained on the optimal policy.
That is, is approximates the Q-function of the policy π(α∗).

Use this critic to find the optimal policy π(α∗). Do so by implementing
the recursion in (28) with the stochastic approximate gradients in (32).
Use γ = 1.0 as a discount factor. Notice that in (32) policy rollouts extend
to t = ∞. Use T = 250 as a large enough number to approximate infinity.

To find this optimal policy you need a parametric policy. We suggest that
you use a fully connected neural network (FCNN) in which the inputs are
state (a) and observation (o) attributes of a car object instantiated from the
class of Task 2 and the outputs are the acceleration actions (a),

a = π(s, o; α) = FCNN(s, o; α). (33)

An FCNN with 4 hidden layers containing nℓ = 128 hidden neurons each
has worked well in our experiments.

To find the optimal policy you also need to choose batches of initial states
to evaluate (32). We suggest that you sample states from the expert tra-
jectory. In our experiments, using B = 1 worked good in practice.

Task 4 Implement the optimal policy π(α∗) computed in Task 3. Record
the sequence of states st and actions at as the trajectory unfolds. Evaluate
the performance by comparing the generated trajectory with an expert
trajectory. Plot both trajectories.

5 Exploratory Policies

RL problems are unique among the problems we have studied in that the
training data is chosen. In both, the original formulation of the optimal
policy in (17) and the actor formulation in (29) we optimize over the initial
state distribution p(s). In Task 3 we choose p(s) as the reference trajectory
S , but this is an arbitrary choice. We can also, as we did in Lab 8, use
dithering of initial states around the reference trajectory.

15



In RL it is standard to use random exploration around policy trajectories.
We describe this formally by introducing an exploratory policy in which
actions are chosen at random with probability δ and according to π(α)
with probability 1 − δ,

πE(s, α) = N (0, σ2I), with probability δ,

πE(s, α) = π(s, α), with probability 1 − δ. (34)

Policy rollouts in (31), or (32) if using batches of initial states, proceed
according to the exploratory policy πE(s, α)

The idea of exploratory policies is to let the actor visit states around the
trajectory generated by the current policy. The rationale for these random
visits is to explore during training a set of states that is more represen-
tative of the set of states that will be seen during execution. We use a
combination of states that we expect to see a priori – drawn from p(s) –
and states that we expect to see a posteriori – drawn from the neighbor-
hood of a policy rollout.

Task 5 Repeat Task 3 with an exploratory policy. Choose δ = 0.01 for the
probability of choosing a random acceleration. When choosing random
accelerations draw them from a white normal distirbution with mean 0
and variance σ2 = 0.1.

Implement the optimal policy π(α∗) obtained with the exploratory policy.
Observe that we use exploration during training but not during execution.
Record the sequence of states st and actions at as the trajectory unfolds.
Evaluate the performance by comparing the generated trajectory with an
expert trajectory. Plot both trajectories.

6 Critic Training

As stated in Section 4.1, a critic Q̃(s, a; β) is a parametric approximation
of the true Q-function Q(s, a; π) of a policy π. To train this approxima-
tion we use policy rollouts to evaluate the Q-function. Thus, from initial
condition (s, a) = (s, π(s)) we execute policy π and follow the MDP’s

16



dynamics to estimate the Q-function as

Q(s, a; π) = Q(s, π(s); π) =
∞

∑
t=0

γt r(st, at) (35)

This is the same as (8), except that we make a = π(s) as this choice of
initial action is required in the definition of the critic.

To train the critic we evaluate the squared loss of the critic and Q-function
difference averaged over an initial distribution of states p(s),

β∗(π) = argmin
β

Ep(s)

[
1
2

∥∥∥Q(s, a, π)− Q̃(s, a; β)
∥∥∥2

]
, (36)

where it is implicit that a = π(s) in both, the Q-function and its critic.

The loss in (36) can be difficult to train because we need to acquire several
estimates of the Q-function. Each of these estimates requires a rollout of
the policy π to evaluate the discounted sum of rewards in (35).

A simpler training approach can be derived from the recursion in Propo-
sition 1. This recursion claims that for any pair of states s and s+ = f (s, a)
and their corresponding actions a = π(s) and a+ = π(s+),

Q(s, a; π) = r(s, a) + γQ(s+, a+; π), (37)

If we have a critic Q̃(s, a; β) that approximates the Q-function well, this
critic must satisfy this same recursion. That is, we must have that

Q̃(s, a; β) = r(s, a) + γQ̃(s+, a+; β) + ∆(s, a, β), (38)

for some function ∆(s, a, β) that is small for all state-action pairs (s, a) =
(s, π(s)) and their subsequent pairs (s+, a+) = (s+, π(s+)).

The smaller that the function ∆(s, a, β) is in (37), the closer that Q̃(s, a; β)
is to satisfying the Q-function recursion in (37) and, by extension, the
closer that Q̃(s, a; β) is to the true Q-function Q(s, a; π). We can therefore
train the critic Q̃(s, a; β) by minimizing the loss,

β∗(π) = argmin
β

Ep(s)

[
1
2

∥∥∥∆(s, a, β)
∥∥∥2

]
, (39)

17



Solving for ∆(s, a, β) in (38) and substituting the result in (39) we obtain
the training loss

β∗(π) = argmin
β

Ep(s)

[
1
2

∥∥∥(Q̃(s, a; β)−γQ̃(s+, a+; β)
)
− r(s, a)

∥∥∥2
]

. (40)

This loss has an intuitive interpretation. It says that the difference be-
tween the Q-function value Q̃(s, a; β) at state s and the (discounted) Q-
function value Q̃(s+, a+; β) at state s+ is the reward r(s, a) accrued in the
transition. We penalize deviations from this condition.

In the particular case in which policies π are parameterized by α the critic
in β∗(π) can be written as a function of the parameter α. In this case it
is convenient to define the loss ℓC(α, β) to represent the objective of the
minimization problem in (40),

β∗(α) = argmin
β

Ep(s)

[
1
2

∥∥∥(Q̃(s, a; β)− γQ̃(s+, a+; β)
)
− r(s, a)

∥∥∥2
]

= argmin
β

ℓC(α, β). (41)

Actions in (41) are chosen from the policy π(α) so that a = π(s, α) and
a+ = π(s+, α). The state s+ = f (s, a) follows from the dynamics of the
MDP. It is interesting that the critic loss ℓC(α, β) is minimized with respect
to β with α fixed and that the actor loss ℓA(α, β) is maximized with respect
to α with β fixed [cf. (41) and (29)].

6.1 Critic Rollouts

To solve the statistical risk minimization (SRM) problem in (41) we con-
sider samples si ∼ p(s) to formulate and solve the empirical risk mini-
mization (SRM) problem defined by the loss

ℓ̂C(α, β) =
1
B

B

∑
i=1

1
2

∥∥∥(Q̃(si, ai; β)− γQ̃(s+i , a+i ; β)
)
− r(si, ai)

∥∥∥2
. (42)

As it should go without saying by now, actions in (42) – as they are in
(41) – are chosen as ai = π(si, α) and as a+i = π(s+i , α). The next states
follow – as they follow in (41) – from execution of the MDP dynamics,
s+i = f (si, ai).

18



An alternative approach to training the critic is to consider policy rollouts.
Let s be an initial state and st be the trajectory generated by rolling out
the policy π. We train the critic Q̃(s, a; β) by minimizing the empirical
risk,

ℓ̂C(α, β) =
∞

∑
t=1

1
2

∥∥∥(Q̃(si, ai; β)− γQ̃(s+i , a+i ; β)
)
− r(si, ai)

∥∥∥2
. (43)

The ERM problems defined by the losses in (42) and (43) are not equiva-
lent. They are evaluating the critic fit over different datasets. In (42) we
measure fit over the initial state distribution p(s). In (42) we measure fit
over the distribution of states that are visited when we execute the policy
π.

A third alternative is to combine (42) and (43). We consider initial state
samples si ∼ p(s) along with trajectories sit obtained by rolling out the
policy π starting at initial condition si. We then train the critic to minimize
the loss,

ℓ̂C(α, β) =
1
B

B

∑
i=1

∞

∑
t=0

1
2

∥∥∥(Q̃(sit, ait; β)− γQ̃(s+it , a+it ; β)
)
− r(sit, ait)

∥∥∥2
. (44)

It is worth comparing (43) and (44) with the critic stochastic gradients
in (31) and (32). Equations (31) and (43) estimate gradients and risks
using policy rollouts. Equations (32) and (44) estimate gradients and risks
combining policy rollouts with an exogenous distribution of initial states.
In both cases the latter is the preferred training method.

In both cases we are encountering the exploration challenge. Since train-
ing states in RL are chosen, we must choose states during training that
are representative of states we expect to see during execution. This is the
reason why we use a combination of states that we expect to see a priori
– drawn from p(s) – and states that we expect to see a posteriori – drawn
from a policy rollout. As discussed in Section 5 the exploration challenge
is unique among problems we have studied.

Task 6 For a fixed policy π train a critic to estimate the Q-function corre-
sponding to this policy. Train this policy by minimizing (44). Use γ = 0.99
as a discount factor, B = 256 for the batch size, and T = 250 as a large
enough number to approximate infinity. Sample initial states from the
reference trajectory S .

19



The critic requires a learning parameterization. We suggest that you use
an FCNN in which the inputs are state (s), observation (o), and acceler-
ation attributes of a car object instantiated from the class of Task 2. The
output of this FCNN is the critic value,

Q̃(s, a, β) = FCNN(s, o, a). (45)

An FCNN with 4 hidden layers containing nℓ = 128 hidden neurons each
has worked well in our experiments.

Train a critic to estimate the Q-function associated with the optimal policy
π(α∗) learned in Task 3. Compute the loss ∆(s, a, β) over a trajectory gen-
erated by α∗ to evaluate the quality of critic estimates of the Q-function.

7 Actor-Critic Reinforcement Learning

In Task 3 we assume that a critic is available and use it to train a policy.
In Task 6 we assume a policy is available and use it to train a critic. There
seems to be some circular reasoning here that we have not explained well.

To explain it well, recall that the goal of an actor is to maximize the actor
loss defined in (29) when a critic is given,

α∗(β) = argmax
α

ℓA(α, β) (46)

Similarly, the goal of a critic is to maximize the actor loss defined in (41)
when a critic is given,

β∗(α) = argmin
β

ℓC(α, β) (47)

This is a chicken and egg situation. The problem we would like to solve
is finding the actor α∗(β∗(α∗)). That is, knowing the optimal policy α∗ we
find the corresponding optimal critic β∗(α∗). This is egg in Task 6. Then,
knowing this optimal critic we find the optimal policy α∗(β∗(α∗)). This is
chicken in Task 3. We need the chicken α∗ to lay the egg β∗(α∗) to birth
the chicken α∗(β∗(α∗)).

As is the case of chickens and eggs, the answer is that eggs and chickens
evolve together. Thus, for an iteration index k and a policy initialization

20



α0 we proceed through the recursive updates,

βk = argmin
β

ℓC(αk, β),

αk+1 = argmax
α

ℓA(α, βk). (48)

For a given policy αk we compute the critic βk (the chicken αk lays the
egg βk). With this critic available we evolve the actor policy to αk+1 (the
egg βk births a better chicken αk+1). We then repeat this process with the
computation of updated critics and policies.

As we did in Sections 4.2 and 6.1 we use empirical approximations of the
statistical losses in (48). Thus, in lieu of the iterations in (48) we use the
iterations

βk = argmin
β

ℓ̂C(αk, β),

αk+1 = argmax
α

ℓ̂A(α, βk). (49)

The empirical actor loss ℓ̂A(α, βk) is given in (32). The empirical critic loss
ℓ̂C(αk, β) is given in (44). The iteration described by (49) is the actor-critic
method.

Task 7 Train the actor and the critic using the iterative actor-critic method
described by (49). Use the same FCNN parameterization of Task 3 for the
actor and the same FCNN parameterization of Task 6 for the critic. As we
did in Tasks 3 and 6, sample initial conditions from the expert trajectory
S . Also, use the same hyper-parameters γ, B and T as in Tasks 3 and 6.

Although (49) calls for iterative critic minimization and actor maximiza-
tion, in practice we run KC stochastic gradient descent steps on the critic
loss and KA stochastic gradient ascent steps on the actor loss. Set KC =
KA = 20.

Actor-critic training is more expensive than separate actor and critic train-
ing. To reduce computation cost we use experience replay buffers. This
means that we store all the states sit, actions ait, rewards r(sit, ait) and
the next state s+it and next action a+it that are created by policy rollouts.
When implementing gradient steps in the actor and critic losses we draw
batches from these histories – as opposed to drawing new batches and
generating new trajectories.

21



Evaluate the accumulated reward per episode and the critic’s loss during
training. Comment.

Task 8 Implement the policy π(α∗) computed in Task 7. Record the se-
quence of states st and actions at as the trajectory unfolds. Evaluate the
performance by comparing the generated trajectory with an expert trajec-
tory. Plot both trajectories.

22



8 Report

Do not take much time to prepare a lab report. We do not want you
to report your code and we don’t want you to report your work. Just
give us answers to the specific questions we ask. Specifically, provide the
following:

Question Report deliverable

Task 1 Do not report.

Task 2 Do not report.

Task 3 Actor loss as a function of training iteration
index.

Task 4 Plot of expert trajectory and reference trajec-
tory.

Task ?? Actor loss as a function of training iteration
index. Plot of expert trajectory and reference
trajectory.

Task 6 Critic loss as a function of training iteration
index.

Task 7 Actor loss as a function of training iteration
index. Critic loss as a function of training it-
eration index.

Task 8 Plot of expert trajectory and reference trajec-
tory.

23


	Markov Decision Processes
	Policies
	Stochastic Policies and MDPs

	Q-Functions and Value Functions
	Q-Function Recursion
	Optimal Policy
	Circuit Navigation
	Observations

	Reinforcement Learning
	Policy Optimization
	Critics
	Actors

	Exploratory Policies
	Critic Training
	Critic Rollouts

	Actor-Critic Reinforcement Learning
	Report

